Do you want to publish a course? Click here

Distinguishing two preparations for same pure state leads to signalling

60   0   0.0 ( 0 )
 Added by Dr Arun K. Pati
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pure state of a physical system can be prepared in an infinite number of ways. Here, we prove that given a pure state of a quantum system it is impossible to distinguish two preparation procedures. Further, we show that if we can distinguish two preparation procedures for the same pure state then that can lead to signalling. This impossibility result is different than the no measurement without disturbance and the no-cloning. Extending this result for a pure bipartite entangled state entails that the impossibility of distinguishing two preparation procedures for a mixed state follows from the impossibility of distinguishing two preparations for a pure bipartite state.



rate research

Read More

We unify and consolidate various results about non-signall-ing games, a subclass of non-local two-player one-round games, by introducing and studying several new families of games and establishing general theorems about them, which extend a number of known facts in a variety of special cases. Among these families are {it reflexive games,} which are characterised as the hardest non-signalling games that can be won using a given set of strategies. We introduce {it imitation games,} in which the players display linked behaviour, and which contains as subclasses the classes of variable assignment games, binary constraint system games, synchronous games, many games based on graphs, and {it unique} games. We associate a C*-algebra $C^*(mathcal{G})$ to any imitation game $mathcal{G}$, and show that the existence of perfect quantum commuting (resp. quantum, local) strategies of $mathcal{G}$ can be characterised in terms of properties of this C*-algebra, extending known results about synchronous games. We single out a subclass of imitation games, which we call {it mirror games,} and provide a characterisation of their quantum commuting strategies that has an algebraic flavour, showing in addition that their approximately quantum perfect strategies arise from amenable traces on the encoding C*-algebra. We describe the main classes of non-signalling correlations in terms of states on operator system tensor products.
This is the TeV4LHC report of the Physics Landscapes Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.
Employing the Pauli matrices, we have constructed a set of operators, which can be used to distinguish six inequivalent classes of entanglement under SLOCC (stochastic local operation and classical communication) for three-qubit pure states. These operators have very simple structure and can be obtained from the Mermins operator with suitable choice of directions. Moreover these operators may be implemented in an experiment to distinguish the types of entanglement present in a state. We show that the measurement of only one operator is sufficient to distinguish GHZ class from rest of the classes. It is also shown that it is possible to detect and classify other classes by performing a small number of measurements. We also show how to construct such observables in any basis. We also consider a few mixed states to investigate the usefulness of our operators. Furthermore, we consider the teleportation scheme of Lee et al. (Phys. Rev. A 72, 024302 (2005)) and show that the partial tangles and hence teleportation fidelity can be measured. We have also shown that these partial tangles can also be used to classify genuinely entangled state, biseparable state and separable state.
127 - Chandru Iyer , G.M. Prabhu 2008
The clock paradox is analyzed for the case when the onward and return trips cover the same <<distance>> (as observed by the traveling twin) but at unequal velocities. In this case the stationary twin observes the distances covered by her sister during the onward and return trips to be different. The analysis is presented using formulations of special relativity and the only requirement for consistency is that all observations are made from any one chosen inertial frame. The analysis suggests that a defining feature of an inertial frame should be based on the continued maintenance of the distinctive synchronicity of the clocks co-moving with it. Published in Journal of Physical and Natural Sciences Volume 1, Issue 1, 2007 http://www.scientificjournals.org/journals2007/articles/1102.pdf
148 - Moses Fayngold 2016
A thought experiment is considered on observation of instantaneous collapse of an extended wave packet. According to relativity of simultaneity, such a collapse being instantaneous in some reference frame must be a lasting process in other frames. But according to quantum mechanics, collapse is instantaneous in any frame. Mathematical structure of quantum mechanics eliminates any contradictions between these two apparently conflicting statements. Here the invariance of quantum-mechanical collapse is shown to follow directly from the Born postulate, without any use of mathematical properties of quantum operators. The consistency of quantum mechanics with Relativity is also shown for instant disentanglement of a composite system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا