No Arabic abstract
We study linear polarization of optical emission from white dwarf (WD) binary system AR~Scorpii. The optical emission from this binary is modulating with the beat frequency of the system, and it is highly polarized, with the degree of the polarization reaching $sim 40$%. The angle of the polarization monotonically increases with the spin phase, and the total swing angle can reach $360^{circ}$ over one spin phase. It is also observed that the morphology of the pulse profile and the degree of linear polarization evolve with the orbital phase. These polarization properties can constrain the scenario for nonthermal emission from AR Scorpii. In this paper, we study the polarization properties predicted by the emission model, in which (i) the pulsed optical emission is produced by the synchrotron emission from relativistic electrons trapped by magnetic field lines of the WD and (ii) the emission is mainly produced at magnetic mirror points of the electron motion. We find that this model can reproduce the large swing of the polarization angle, provided that the distribution of the initial pitch angle of the electrons that are leaving the M-type star is biased to a smaller angle rather than a uniform distribution. The observed direction of the swing suggests that the Earth viewing angle is less than $90^{circ}$ measured from the WD spin axis. The current model prefers an Earth viewing angle of $50^{circ}-60^{circ}$ and a magnetic inclination angle of $50^{circ}-60^{circ}$ (or $120^{circ}-130^{circ}$). We discuss that the different contribution of the emission from M-type star to total emission causes a large variation in the pulsed fraction and the degree of the linear polarization along the orbital phase.
We report the analysis result of UV/X-ray emission from AR~Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and a M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M-type star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase, and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M-type star surface rather than from the accretion column on the WDs star similar to the usual IPs. Beside, the observed X-ray emission also modulates with WDs spin with a pulse fraction of $sim 14%$. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR~Scorpii are accelerated to a relativistic speed, and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, the evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M-type star surface heats up the plasma to a temperature of several keV, and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WDs closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.
AR~Scorpii is an intermediate polar system composed of a magnetic white dwarf (WD) and an M-type star, and shows non-thermal, pulsed, and highly linearly polarized emission. The radio/optical emission modulates with the WDs spin and show the double peak structure in the light curves. In this paper, we discuss a possible scenario for the radiation mechanism of AR~Scorpii. The magnetic interaction on the surface of the companion star produces an outflow from the companion star, the heating of the companion star surface, and the acceleration of electrons to a relativistic energy. The accelerated electrons, whose typical Lorentz factor is $sim 50-100$, from the companion star move along the magnetic field lines toward the WD surface. The electrons injected with the pitch angle of $sintheta_{p,0}>0.05$ are subject to the magnetic mirror effect and are trapped in the closed magnetic field line region.We find that the emission from the first magnetic mirror points mainly contributes to the observed pulsed emission and the formation of the double-peak structure in the light curve. For the inclined rotator, the pulse peak in the calculated light curve shifts the position in the spin phase, and a Fourier analysis exhibits a beat frequency feature, which are consistent with the optical/UV observations. The pulse profile also evolves with the orbital phase owing to the effect of the viewing geometry. The model also interprets the global features of the observed spectral energy distribution in radio to X-ray energy bands. We also discuss the curvature radiation and the inverse-Compton scattering process in the outer gap accelerator of the WD in AR Scorpii and discuss the possibility of the detection by future high-energy missions.
We report a study of the X-ray emission from the white dwarf/M-type star binary system AR Scorpii using archival data taken in 2016-2020. It has been known that the X-ray emission is dominated by the optically thin thermal plasma emission, and its flux level varies significantly over the orbital phase. The X-ray emission also contains a component that modulates with the beat frequency between the white dwarfs spin frequency and orbital frequency. In this new analysis, the 2020 data taken by NICER shows that the X-ray emission is modulating with the spin frequency as well as the beat frequency, indicating that part of the X-ray emission is coming from the white dwarfs magnetosphere. It is found that the signal of the spin frequency appears only at a specific orbital phase, while the beat signal appears over the orbital phase. We interpret the X-ray emission modulating with the spin frequency and the beat frequency as a result of the synchrotron emission from electrons with a smaller and larger pitch angle, respectively. In a long-term evolution, the beat pulse profile averaged over the orbital phase changed from a single-peak structure in 2016/2018 to a double-peak structure in 2020. The observed X-ray flux levels measured in 2016/2017 are higher than those measured in 2018/2020. The plasma temperature and amplitude of the orbital waveform might vary with time too. These results indicate that the X-ray emission from AR Scorpii evolves on a timescale of years. This long-term evolution would be explained by a super-orbital modulation related to, for example, a precession of the white dwarf, or a fluctuation of the system related to activity of the companion star.
The variable star AR Sco was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55 hr orbit with a more massive white dwarf. Here we report new optical observations of AR Sco that show strong linear polarization (up to 40%) which varies strongly and periodically on both the spin period of the white dwarf and the beat period between the spin and orbital period, as well as low level (< a few %) circular polarization. These observations support the notion that, similar to neutron star pulsars, the pulsed luminosity of AR Sco is powered by the spin-down of the rapidly-rotating white dwarf which is highly magnetised (up to 500 MG). The morphology of the modulated linear polarization is similar to that seen in the Crab pulsar, albeit with a more complex waveform owing to the presence of two periodic signals of similar frequency. Magnetic interactions between the two component stars, coupled with synchrotron radiation from the white dwarf, power the observed polarized and non-polarized emission. AR Scorpii is therefore the first example of a white dwarf pulsar.
The binary system AR Scorpii hosts an M-type main sequence cool star orbiting around a magnetic white dwarf in the Milky Way Galaxy. The broadband non-thermal emission over radio, optical and X-ray wavebands observed from AR Scorpii indicates strong modulations on the spin frequency of the white dwarf as well as the spin-orbit beat frequency of the system. Therefore, AR Scorpii is also referred to as a white dwarf pulsar wherein a fast spinning white dwarf star plays very crucial role in the broadband non-thermal emission. Several interpretations for the observed features of AR Scorpii appear in the literature without firm conclusions. In this work, we investigate connection between some of the important physical properties like spin-down power, surface magnetic field, equation of state, temperature and gravity associated with the white dwarf in the binary system AR Scorpii and its observational characteristics. We explore the plausible effects of white dwarf surface magentic field on the absence of substantial accretion in this binary system and also discuss the gravitational wave emission due to magnetic deformation mechanism.