No Arabic abstract
It has been proposed that Very Long Baseline Interferometry (VLBI) at sub-millimeter waves will allow us to image the shadow of the black hole in the center of our Milky Way, Sagittarius A* (Sgr A*), and thereby test basic predictions of general relativity. This paper presents imaging simulations of a new Space VLBI mission concept. An initial design study of the concept has been presented as the Event Horizon Imager (EHI). The EHI may be suitable for imaging Sgr A* at high frequencies (up to ~690 GHz), which has significant advantages over performing ground-based VLBI at 230 GHz. The concept EHI design consists of two or three satellites in polar or equatorial circular Medium-Earth Orbits with slightly different radii. Due to the relative drift of the satellites along the individual orbits, this setup will result in a dense spiral-shaped uv-coverage with long baselines (up to ~60 Glambda), allowing for extremely high-resolution and high-fidelity imaging of radio sources. We simulate EHI observations of general relativistic magnetohydrodynamics models of Sgr A* and calculate the expected noise based on preliminary system parameters. On long baselines, where the signal-to-noise ratio may be low, fringes could be detected if the system is sufficiently phase stable and the satellite orbits can be reconstructed with sufficient accuracy. Averaging visibilities accumulated over multiple epochs of observations could then help improving the image quality. With three satellites, closure phases could be used for imaging. Our simulations show that the EHI could be capable of imaging the black hole shadow of Sgr A* with a resolution of 4 uas (about 8% of the shadow diameter) within several months of observing time. The EHI concept could thus be used to measure black hole shadows much more precisely than with ground-based VLBI, allowing for stronger tests of general relativity and accretion models.
Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly. Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ~50 microarcseconds. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry (VLBI). However, strong-field GR features of interest will be blurred at lambda >= 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.
The advent of the Event Horizon Telescope (EHT), a millimeter-wave very-long baseline interferometric array, has enabled spatially-resolved studies of the sub-horizon-scale structure for a handful of supermassive black holes. Among these, the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), presents the largest angular cross section. Thus far, these studies have focused upon measurements of the black hole spin and the validation of low-luminosity accretion models. However, a critical input into the analysis of EHT data is the structure of the black hole spacetime, and thus these observations provide the novel opportunity to test the applicability of the Kerr metric to astrophysical black holes. Here we present the first simulated images of a radiatively inefficient accretion flow (RIAF) around Sgr A* employing a quasi-Kerr metric that contains an independent quadrupole moment in addition to the mass and spin that fully characterize a black hole in general relativity. We show that these images can be significantly different from the images of a RIAF around a Kerr black hole with the same spin and demonstrate the feasibility of testing the no-hair theorem by constraining the quadrupolar deviation from the Kerr metric with existing EHT data. Equally important, we find that the disk inclination and spin orientation angles are robust to the inclusion of additional parameters, providing confidence in previous estimations assuming the Kerr metric based upon EHT observations. However, at present the limits upon potential modifications of the Kerr metric remain weak.
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intra-hour variability associated with these fields.
Very Long Baseline Interferometry (VLBI) at sub-millimeter waves has the potential to image the shadow of the black hole in the Galactic Center, Sagittarius A* (Sgr A*), and thereby test basic predictions of the theory of general relativity. We investigate the imaging prospects of a new Space VLBI mission concept. The setup consists of two satellites in polar or equatorial circular Medium-Earth Orbits with slightly different radii, resulting in a dense spiral-shaped uv-coverage with long baselines, allowing for extremely high-resolution and high-fidelity imaging of radio sources. We simulate observations of a general relativistic magnetohydrodynamics model of Sgr A* for this configuration with noise calculated from model system parameters. After gridding the $uv$-plane and averaging visibilities accumulated over multiple months of integration, images of Sgr A* with a resolution of up to 4 $mu$as could be reconstructed, allowing for stronger tests of general relativity and accretion models than with ground-based VLBI.