Do you want to publish a course? Click here

G5.89: An Explosive Outflow Powered by a Proto-Stellar Merger?

74   0   0.0 ( 0 )
 Added by Luis Zapata Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The explosive outflows are a newly-discovered family of molecular outflows associated with high-mass star forming regions. Such energetic events are possibly powered by the release of gravitational energy related with the formation of a (proto)stellar merger or a close stellar binary. Here, we present sensitive and high angular resolution observations (0.85$$) archival CO(J=3-2) observations carried out with the Submillimeter Array (SMA) of the high-mass star forming region G5.89$-$0.39 that reveal the possible presence of an explosive outflow. We find six well-defined and narrow straight filament-like ejections pointing back approximately to the center of an expanding molecular and ionized shell located at the center of this region. These high velocity ($-$120 to $+$100 km s$^{-1}$) filaments follow a Hubble-like velocity law with the radial velocities increasing with the projected distance. The estimated kinematical age of the filaments is about of 1000 yrs, a value similar to the dynamical age found for the expanding ionized shell. G5.89 is the thus the third explosive outflow reported in the galaxy (together with Orion BN-KL and DR21) and argues in favor of the idea that this is a frequent phenomenon. In particular, explosive outflows, in conjunction with runaway stars, demonstrate that dynamical interactions in such groups are a very important ingredient in star formation.



rate research

Read More

The explosive molecular outflow detected decades ago in the Orion BN/KL region of massive star formation was considered to be a bizarre event. This belief was strengthened by the non detection of similar cases over the years with the only exception of the marginal case of DR21. Here, we confim a similar explosive outflow associated with the UCH$_{rm II}$ region G5.89$-$0.39 that indicates that this phenomenon is not unique to Orion or DR21. Sensitive and high angular resolution ($sim$ 0.1$$) ALMA CO(2$-$1) and SiO(5$-$4) observations show that the molecular outflow in the massive star forming region G5.89$-$0.39 is indeed an explosive outflow with an age of about 1000 yrs and a liberated kinetic energy of 10$^{46-49}$ erg. Our new CO(2$-$1) ALMA observations revealed over 30 molecular filaments, with Hubble-like expansion motions, pointing to the center of UCH$_{rm II}$ region. In addition, the SiO(5$-$4) observations reveal warmer and strong shocks very close to the origin of the explosion, confirming the true nature of the flow. A simple estimation for the occurrence of these explosive events during the formation of the massive stars indicates an event rate of once every $sim$100 yrs, which is close to the supernovae rate.
The formation of high-mass stars is usually accompanied by powerful protostellar outflows. Such high-mass outflows are not simply scaled-u
We present the results of ALMA observations toward the low-mass Class-0 binary system, VLA 1623Aab in the Ophiuchus molecular cloud in $^{12}$CO, $^{13}$CO, and C$^{18}$O(2--1) lines. Our $^{12}$CO ($J$=2--1) data reveal that the VLA 1623 outflow consists of twin spatially overlapped outflows/jets. The redshifted northwestern jet exhibits the three cycles of wiggle with a spatial period of 1360$pm$10 au, corresponding to a time period of 180 yr. The wiggle-like structure is also found in the position-velocity (PV) diagram, showing an amplitude in velocity of about 0.9 km s$^{-1}$. Both the period and the velocity amplitude of the wiggle are roughly consistent with those expected from the binary parameters, i.e., the orbital period (460$pm$20 yr) and the Keplerian velocity (2.2 km s$^{-1}$). Our $^{13}$CO and C$^{18}$O images reveal the nature of the dense gas in the two cm/mm sources, VLA 1623-B and -W, and its relation to the outflows, and strongly support the previous interpretation that both are shocked cloudlets. The driving sources of the twin molecular outflows are, therefore, likely to be within the VLA 1623Aab binary. The axes of the two molecular outflows are estimated to be inclined by 70$arcdeg$ from each other across the plane of sky, implying that the associated protostellar disks are also misaligned by $70arcdeg$. Such a misalignment, together with a small binary separation of 34 au in the one of the youngest protobinary systems known, is difficult to explain by models of disk fragmentation in quiescent environments. Instead, other effects such as turbulence probably play roles in misaligning the disks.
As part of the WISH (Water In Star-forming regions with Herschel) key project, we report on the observations of several ortho- and para-H2O lines performed with the HIFI instrument towards two bright shock spots (R4 and B2) along the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud. These data are used to identify the physical conditions giving rise to the H2O emission and infer any dependence with velocity. These observations provide evidence that the observed water lines probe a warm (T_kin~400-600 K) and very dense (n 10^6 - 10^7 cm^-3) gas, not traced by other molecules, such as low-J CO and SiO, but rather traced by mid-IR H2 emission. In particular, H2O shows strong differences with SiO in the excitation conditions and in the line profiles in the two observed shocked positions, pointing to chemical variations across the various velocity regimes and chemical evolution in the different shock spots. Physical and kinematical differences can be seen at the two shocked positions. At the R4 position, two velocity components with different excitation can be distinguished, with the component at higher velocity (R4-HV) being less extended and less dense than the low velocity component (R4-LV). H2O column densities of about 2 10^13 and 4 10^14 cm^-2 have been derived for the R4-LV and the R4-HV components, respectively. The conditions inferred for the B2 position are similar to those of the R4-HV component, with H2O column density in the range 10^14 - 5 10^14 cm^-2, corresponding to H2O/H2 abundances in the range 0.5 - 1 10^-5. The observed line ratios and the derived physical conditions seem to be more consistent with excitation in a low velocity J-type shock with large compression rather than in a stationary C-shock, although none of these stationary models seems able to reproduce all the characteristics of the observed emission.
SNhunt151 was initially classified as a supernova (SN) impostor (nonterminal outburst of a massive star). It exhibited a slow increase in luminosity, lasting about 450 d, followed by a major brightening that reaches M_V ~ -18 mag. No source is detected to M_V > -13 mag in archival images at the position of SNhunt151 before the slow rise. Low-to-mid-resolution optical spectra obtained during the pronounced brightening show very little evolution, being dominated at all times by multicomponent Balmer emission lines, a signature of interaction between the material ejected in the new outburst and the pre-existing circumstellar medium. We also analyzed mid-infrared images from the Spitzer Space Telescope, detecting a source at the transient position in 2014 and 2015. Overall, SNhunt151 is spectroscopically a Type IIn SN, somewhat similar to SN2009ip. However, there are also some differences, such as a slow pre-discovery rise, a relatively broad light-curve peak showing a longer rise time (~ 50 d) and a slower decline, along with a negligible change in the temperature around the peak (T < 10^4 K). We suggest that SNhunt151 is the result of an outburst, or a SN explosion, within a dense circumstellar nebula, similar to those embedding some luminous blue variables like Eta Carinae and originating from past mass-loss events.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا