Do you want to publish a course? Click here

On a class of distributions generated by stochastic mixture of the extreme order statistics of a sample of size two

61   0   0.0 ( 0 )
 Added by Ali Dolati
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper considers a family of distributions constructed by a stochastic mixture of the order statistics of a sample of size two. Various properties of the proposed model are studied. We apply the model to extend the exponential and symmetric Laplace distributions. An extension to the bivariate case is considered.



rate research

Read More

77 - Ricardo S Ehlers 2015
In this paper, we propose to obtain the skewed version of a unimodal symmetric density using a skewing mechanism that is not based on a cumulative distribution function. Then we disturb the unimodality of the resulting skewed density. In order to introduce skewness we use the general method which transforms any continuous unimodal and symmetric distribution into a skewed one by changing the scale at each side of the mode.
We discuss some extensions of results from the recent paper by Chernoyarov et al. (Ann. Inst. Stat. Math., October 2016) concerning limit distributions of Bayesian and maximum likelihood estimators in the model signal plus white noise with irregular cusp-type signals. Using a new representation of fractional Brownian motion (fBm) in terms of cusp functions we show that as the noise intensity tends to zero, the limit distributions are expressed in terms of fBm for the full range of asymmetric cusp-type signals correspondingly with the Hurst parameter H, 0<H<1. Simulation results for the densities and variances of the limit distributions of Bayesian and maximum likelihood estimators are also provided.
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter $H$.
Rejecting the null hypothesis in two-sample testing is a fundamental tool for scientific discovery. Yet, aside from concluding that two samples do not come from the same probability distribution, it is often of interest to characterize how the two distributions differ. Given samples from two densities $f_1$ and $f_0$, we consider the task of localizing occurrences of the inequality $f_1 > f_0$. To avoid the challenges associated with high-dimensional space, we propose a general hypothesis testing framework where hypotheses are formulated adaptively to the data by conditioning on the combined sample from the two densities. We then investigate a special case of this framework where the notion of locality is captured by a random walk on a weighted graph constructed over this combined sample. We derive a tractable testing procedure for this case employing a type of scan statistic, and provide non-asymptotic lower bounds on the power and accuracy of our test to detect whether $f_1>f_0$ in a local sense. Furthermore, we characterize the tests consistency according to a certain problem-hardness parameter, and show that our test achieves the minimax detection rate for this parameter. We conduct numerical experiments to validate our method, and demonstrate our approach on two real-world applications: detecting and localizing arsenic well contamination across the United States, and analyzing two-sample single-cell RNA sequencing data from melanoma patients.
We review a finite-sampling exponential bound due to Serfling and discuss related exponential bounds for the hypergeometric distribution. We then discuss how such bounds motivate some new results for two-sample empirical processes. Our development complements recent results by Wei and Dudley (2011) concerning exponential bounds for two-sided Kolmogorov - Smirnov statistics by giving corresponding results for one-sided statistics with emphasis on adjusted inequalities of the type proved originally by Dvoretzky, Kiefer, and Wolfowitz (1956) and by Massart (1990) for one-samp
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا