No Arabic abstract
Simple symmetry arguments applied to the third generation lead to a prediction: there exist new sequential Higgs doublets with masses of order $lesssim 5 $ TeV, with approximately universal Higgs-Yukawa coupling constants, $gsim 1$. This is calibrated by the known Higgs boson mass, the top quark Higgs-Yukawa coupling, and the $b$-quark mass. A new massive weak-isodoublet, $H_b$, coupled to the $b$-quark with $gsim 1$ is predicted, and may be accessible to the LHC at $13$ TeV, and definitively at the energy upgraded LHC of $26$ TeV. The extension to leptons generates a new $H_tau$ and a possible $H_{ u_tau}$ doublet. The accessibility of the latter depends upon whether the mass of the $tau$-neutrino is Dirac or Majorana.
We consider multi-Higgs-doublet models which, for symmetry reasons, have a universal Higgs-Yukawa (HY) coupling, $g$. This is identified with the top quark $g=g_tapprox 1$. The models are concordant with the quasi-infrared fixed point, and the top quark mass is correctly predicted with a compositeness scale (Landau pole) at $M_{planck}$, with sensitivity to heavier Higgs states. The observed Higgs boson is a $bar{t}t$ composite, and a first sequential Higgs doublet, $H_b$, with $gapprox g_tapprox 1$ coupled to $bar{b}_R(t,b)_L$ is predicted at a mass $3.0 lesssim M_b lesssim 5.5$ TeV and accessible to LHC and its upgrades. This would explain the mass of the $b-$quark, and the tachyonic SM Higgs boson mass$^2$. The flavor texture problem is no longer associated with the HY couplings, but rather is determined by the inverted multi-Higgs boson mass spectrum, e.g., the lightest fermions are associated with heaviest Higgs bosons and vice versa. The theory is no less technically natural than the standard model. The discovery of $H_b$ at the LHC would confirm the general compositeness idea of Higgs bosons and anticipate additional states potentially accessible to the $100$ TeV $pp$ machine.
The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the different decay channels of the neutral H and A bosons accessible at the LHC, in the framework of the phenomenological MSSM. The implications from the present LHC results and the expected sensitivity of the 14 TeV data are discussed in terms of the coverage of the [M(A) - tan beta] plane. New channels becoming important at 13 and 14 TeV for low values of tan beta are characterised in terms of their kinematics and the reconstruction strategies. The effect of QCD systematics, SUSY loop effects and decays into pairs of SUSY particles on these constraints are discussed in details.
The next-to-minimal supersymmetric standard model (NMSSM) with an extended Higgs sector offers one of the Higgs boson as the Standard model (SM) like Higgs with a mass around 125 GeV along with other Higgs bosons with lighter and heavier masses and not excluded by any current experiments. At the LHC, phenomenology of these non SM like Higgs bosons is very rich and considerably different from the other supersymmetric models. In this work, assuming one of the Higgs bosons to be the SM like, we revisit the mass spectrum and couplings of non SM like Higgs bosons taking into consideration all existing constraints and identify the relevant region of parameter space. The discovery potential of these non SM like Higgs bosons, apart from their masses, is guided by their couplings with gauge bosons and fermions which are very much parameter space sensitive. We evaluate the rates of productions of these non SM like Higgs bosons at the LHC for a variety of decay channels in the allowed region of the parameter space. Although bb, {tau}{tau} decay modes appear to be the most promising, it is observed that for a substantial region of parameter space the two-photon decay mode has a remarkably large rate. In this work we emphasize that this diphoton mode can be exploited to find the NMSSM Higgs signal and can also be potential avenue to distinguish the NMSSM from the MSSM. In addition, we discuss briefly the various detectable signals of these non SM Higgs bosons at the LHC.
Skyrmions are extended field configurations, initially proposed to describe baryons as topological solitons in an effective field theory of mesons. We investigate and confirm the existence of skyrmions within the electroweak sector of the Standard Model and study their properties. We find that the interplay of the electroweak sector with a dynamical Higgs field and the Skyrme term leads to a non-trivial vacuum structure with the skyrmion and perturbative vacuum sectors separated by a finite energy barrier. We identify dimension-8 operators that stabilise the electroweak skyrmion as a spatially localised soliton field configuration with finite size. Such operators are induced generically by a wide class of UV models. To calculate the skyrmion energy and radius we use a neural network method. Electroweak skyrmions are non-topological solitons but are exponentially long lived, and we find that the electroweak skyrmion is a viable dark matter candidate. While the skyrmion production cross section at collider experiments is suppressed, measuring the size of the Skyrme term in multi-Higgs-production processes at high-energy colliders is a promising avenue to probe the existence of electroweak skyrmions.
The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The Feynman rules are derived from the full expression for the Lagrangian and the mass matrices of the neutralinos and Higgs bosons in the NMSSM. Some crucial differences between the vertex functions of the NMSSM and the Minimal Supersymmetric Standard Model (MSSM) are discussed.