An Unknown Input Multi-Observer Approach for Estimation and Control under Adversarial Attacks


Abstract in English

We address the problem of state estimation, attack isolation, and control of discrete-time linear time-invariant systems under (potentially unbounded) actuator and sensor false data injection attacks. Using a bank of unknown input observers, each observer leading to an exponentially stable estimation error (in the attack-free case), we propose an observer-based estimator that provides exponential estimates of the system state in spite of actuator and sensor attacks. Exploiting sensor and actuator redundancy, the estimation scheme is guaranteed to work if a sufficiently small subset of sensors and actuators are under attack. Using the proposed estimator, we provide tools for reconstructing and isolating actuator and sensor attacks; and a control scheme capable of stabilizing the closed-loop dynamics by switching off isolated actuators. Simulation results are presented to illustrate the performance of our tools.

Download