No Arabic abstract
In this paper we proceed into the next step of formalization of a consistent dual theory for mass dimension one spinors. This task is developed approaching the two different and complementary aspects of such duals, clarifying its algebraic structure and the so called $tau-$deformation. The former regards the mathematical equivalence of the recent proposed Lorentz preserving dual with the duals of algebraic spinors, from Clifford algebras, showing the consistency and generality of the new dual. Moreover, by revealing its automorphism structure, the hole of the $tau-$deformation and contrasting the action group orbits with other Lorentz breaking scenarios, we argue that the new mass dimension one dual theory is placed over solid and consistent basis.
An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breaking potential, driving the Universe to an inflationary regime that increases the scale factor for about 71 e-folds. After the end of inflation, the field starts to oscillate and can transfer its energy to the standard model particles through a reheating mechanism. Such a process is briefly discussed in terms of the admissible couplings of the MDO field with the electromagnetic and Higgs fields. We show that even if the field loses all its kinetic energy during reheating, it can evolve as dark matter due a gravitational coupling (of spinorial origin) with baryonic matter. Since the field acquires a constant value at the bottom of the potential, a non-null, although tiny, mass term acts as a dark energy component nowadays. Therefore, we conclude that MDO fermionic field is a good candidate to drive the whole evolution of the Universe, in such a way that the inflationary field, dark matter and dark energy are described by different manifestations of a single field.
We describe several results concerning global quantum quenches from states with short-range correlations to quantum critical points whose low-energy properties are described by a 1+1-dimensional conformal field theory (CFT), extending the work of Calabrese and Cardy (2006): (a) for the special class of initial states discussed in that paper we show that, once a finite region falls inside the horizon, its reduced density matrix is exponentially close in $L_2$ norm to that of a thermal Gibbs state; (b) small deformations of this initial state in general lead to a (non-Abelian) generalized Gibbs distribution (GGE) with, however, the possibility of parafermionic conserved charges; (c) small deformations of the CFT, corresponding to curvature of the dispersion relation and (non-integrable) left-right scattering, lead to a dependence of the speed of propagation on the initial state, as well as diffusive broadening of the horizon.
Recent development of path integral matching techniques based on the covariant derivative expansion has made manifest a universal structure of one-loop effective Lagrangians. The universal terms can be computed once and for all to serve as a reference for one-loop matching calculations and to ease their automation. Here we present the fermionic universal one-loop effective action (UOLEA), resulting from integrating out heavy fermions with scalar, pseudo-scalar, vector and axial-vector couplings. We also clarify the relation of the new terms computed here to terms previously computed in the literature and those that remain to complete the UOLEA. Our results can be readily used to efficiently obtain analytical expressions for effective operators arising from heavy fermion loops.
In this work we use momentum-space techniques to evaluate the propagator $G(x,x^{prime})$ for a spin $1/2$ mass dimension one spinor field on a curved Friedmann-Robertson-Walker spacetime. As a consequence, we built the one-loop correction to the effective lagrangian in the coincidence limit. Going further we compute the effective lagrangian in the finite temperature regime. We arrive at interesting cosmological consequences, as time-dependent cosmological `constant, fully explaining the functional form of previous cosmological models.
In this work we explore the boundary conditions in the Einstein-Hilbert action, by considering a displacement from the Riemannian manifold to an extended one. The latter is characterized by including spinor fields into the quantum geometric description of a noncommutative spacetime. These fields are defined on the background spacetime, emerging from the expectation value of the quantum structure of spacetime generated by matrices that comply with a Clifford algebra. We demonstrate that spinor fields are candidate to describe all known interactions in physics, with gravitation included. In this framework we demonstrate that the cosmological constant $Lambda$, is originated exclusively by massive fermion fields that would be the primordial components of dark energy, during the inflationary expansion of an universe that describes a de Sitter expansion.