No Arabic abstract
In this paper, we address unsupervised pose-guided person image generation, which is known challenging due to non-rigid deformation. Unlike previous methods learning a rock-hard direct mapping between human bodies, we propose a new pathway to decompose the hard mapping into two more accessible subtasks, namely, semantic parsing transformation and appearance generation. Firstly, a semantic generative network is proposed to transform between semantic parsing maps, in order to simplify the non-rigid deformation learning. Secondly, an appearance generative network learns to synthesize semantic-aware textures. Thirdly, we demonstrate that training our framework in an end-to-end manner further refines the semantic maps and final results accordingly. Our method is generalizable to other semantic-aware person image generation tasks, eg, clothing texture transfer and controlled image manipulation. Experimental results demonstrate the superiority of our method on DeepFashion and Market-1501 datasets, especially in keeping the clothing attributes and better body shapes.
Pose-guided person image generation is to transform a source person image to a target pose. This task requires spatial manipulations of source data. However, Convolutional Neural Networks are limited by the lack of ability to spatially transform the inputs. In this paper, we propose a differentiable global-flow local-attention framework to reassemble the inputs at the feature level. Specifically, our model first calculates the global correlations between sources and targets to predict flow fields. Then, the flowed local patch pairs are extracted from the feature maps to calculate the local attention coefficients. Finally, we warp the source features using a content-aware sampling method with the obtained local attention coefficients. The results of both subjective and objective experiments demonstrate the superiority of our model. Besides, additional results in video animation and view synthesis show that our model is applicable to other tasks requiring spatial transformation. Our source code is available at https://github.com/RenYurui/Global-Flow-Local-Attention.
Human pose transfer has received great attention due to its wide applications, yet is still a challenging task that is not well solved. Recent works have achieved great success to transfer the person image from the source to the target pose. However, most of them cannot well capture the semantic appearance, resulting in inconsistent and less realistic textures on the reconstructed results. To address this issue, we propose a new two-stage framework to handle the pose and appearance translation. In the first stage, we predict the target semantic parsing maps to eliminate the difficulties of pose transfer and further benefit the latter translation of per-region appearance style. In the second one, with the predicted target semantic maps, we suggest a new person image generation method by incorporating the region-adaptive normalization, in which it takes the per-region styles to guide the target appearance generation. Extensive experiments show that our proposed SPGNet can generate more semantic, consistent, and photo-realistic results and perform favorably against the state of the art methods in terms of quantitative and qualitative evaluation. The source code and model are available at https://github.com/cszy98/SPGNet.git.
Pose-guided person image generation and animation aim to transform a source person image to target poses. These tasks require spatial manipulation of source data. However, Convolutional Neural Networks are limited by the lack of ability to spatially transform the inputs. In this paper, we propose a differentiable global-flow local-attention framework to reassemble the inputs at the feature level. This framework first estimates global flow fields between sources and targets. Then, corresponding local source feature patches are sampled with content-aware local attention coefficients. We show that our framework can spatially transform the inputs in an efficient manner. Meanwhile, we further model the temporal consistency for the person image animation task to generate coherent videos. The experiment results of both image generation and animation tasks demonstrate the superiority of our model. Besides, additional results of novel view synthesis and face image animation show that our model is applicable to other tasks requiring spatial transformation. The source code of our project is available at https://github.com/RenYurui/Global-Flow-Local-Attention.
Existing alignment-based methods have to employ the pretrained human parsing models to achieve the pixel-level alignment, and cannot identify the personal belongings (e.g., backpacks and reticule) which are crucial to person re-ID. In this paper, we propose the identity-guided human semantic parsing approach (ISP) to locate both the human body parts and personal belongings at pixel-level for aligned person re-ID only with person identity labels. We design the cascaded clustering on feature maps to generate the pseudo-labels of human parts. Specifically, for the pixels of all images of a person, we first group them to foreground or background and then group the foreground pixels to human parts. The cluster assignments are subsequently used as pseudo-labels of human parts to supervise the part estimation and ISP iteratively learns the feature maps and groups them. Finally, local features of both human body parts and personal belongings are obtained according to the selflearned part estimation, and only features of visible parts are utilized for the retrieval. Extensive experiments on three widely used datasets validate the superiority of ISP over lots of state-of-the-art methods. Our code is available at https://github.com/CASIA-IVA-Lab/ISP-reID.
Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammar constrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterance and meaning representation. During synchronous decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve competitive unsupervised semantic parsing performance on multiple datasets.