Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces


Abstract in English

We approximate functions defined on smooth bounded domains by elements of the eigenspaces of the Laplacian or the Stokes operator in such a way that the approximations are bounded and converge in both Sobolev and Lebesgue spaces. We prove an abstract result referred to fractional power spaces of positive, self-adjoint, compact-inverse operators on Hilbert spaces, and then obtain our main result by using the explicit form of these fractional power spaces for the Dirichlet Laplacian and Stokes operators. As a simple application, we prove that all weak solutions of the incompressible convective Brinkman--Forchheimer equations posed on a bounded domain in ${mathbb R}^3$ satisfy the energy equality.

Download