Common universal behaviors of magnetic domain walls driven by spin-polarized electrical current and magnetic field


Abstract in English

We explore universal behaviors of magnetic domain wall driven by the spin-transfer of an electrical current, in a ferromagnetic (Ga,Mn)(As,P) thin film with perpendicular magnetic anisotropy. For a current direction transverse to domain wall, the dynamics of the thermally activated creep regime and the depinning transition are found to be compatible with a self-consistent universal description of magnetic field induced domain wall dynamics. This common universal behavior, characteristic of the so-called quenched Edwards-Wilkinson universality class, is confirmed by a complementary and independent analysis of domain wall roughness. However, the tilting of domain walls and the formation of facets is produced by the directionality of interaction with the current, which acts as a magnetic field only in the direction transverse to domain wall.

Download