No Arabic abstract
Fog radio access network (F-RAN) and virtualisation are promising technologies for 5G networks. In F-RAN, the fog and cloud computing are integrated where the conventional C-RAN functions are diverged to the edge devices of radio access networks. F-RAN is adopted to mitigate the burden of front-haul and improve the end to end (E2E) latency. On other hand, virtualization and network function virtualization (NFV) are IT techniques that aim to convert the functions from hardware to software based functions. Many merits could be brought by the employment of NFV in mobile networks including a high degree of reliability, flexibility and energy efficiency. In this paper, a virtualization framework is introduced for F-RAN to improve the energy efficiency in 5G networks. In this framework, a gigabit passive optical network (GPON) is leveraged as a backbone network for the proposed F-RAN architecture where it connects several evolved nodes B (eNodeBs) via fibre cables. The energy-efficiency of the proposed F-RAN architecture has been investigated and compared with the conventional C-RAN architecture in two different scenarios using mixed integer linear programming (MILP) models. The MILP results indicate that on average a 30% power saving can be achieved by the F-RAN architecture compared with the C-RAN architecture.
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and limited spectrum make the radio resource allocation a challenging problem in 5G. In this paper, we propose a multi-agent reinforcement learning (MARL) method for radio resource slicing in 5G. We model each slice as an intelligent agent that competes for limited radio resources, and the correlated Q-learning is applied for inter-slice resource block (RB) allocation. The proposed correlated Q-learning based interslice RB allocation (COQRA) scheme is compared with Nash Q-learning (NQL), Latency-Reliability-Throughput Q-learning (LRTQ) methods, and the priority proportional fairness (PPF) algorithm. Our simulation results show that the proposed COQRA achieves 32.4% lower latency and 6.3% higher throughput when compared with LRTQ, and 5.8% lower latency and 5.9% higher throughput than NQL. Significantly higher throughput and lower packet drop rate (PDR) is observed in comparison to PPF.
In this paper, we propose a transfer learning (TL)-enabled edge-CNN framework for 5G industrial edge networks with privacy-preserving characteristic. In particular, the edge server can use the existing image dataset to train the CNN in advance, which is further fine-tuned based on the limited datasets uploaded from the devices. With the aid of TL, the devices that are not participating in the training only need to fine-tune the trained edge-CNN model without training from scratch. Due to the energy budget of the devices and the limited communication bandwidth, a joint energy and latency problem is formulated, which is solved by decomposing the original problem into an uploading decision subproblem and a wireless bandwidth allocation subproblem. Experiments using ImageNet demonstrate that the proposed TL-enabled edge-CNN framework can achieve almost 85% prediction accuracy of the baseline by uploading only about 1% model parameters, for a compression ratio of 32 of the autoencoder.
In this paper, we propose a novel energy-efficient framework for an electric vehicle (EV) network using a contract theoretic-based economic model to maximize the profits of charging stations (CSs) and improve the social welfare of the network. Specifically, we first introduce CS-based and CS clustering-based decentralized federated energy learning (DFEL) approaches which enable the CSs to train their own energy transactions locally to predict energy demands. In this way, each CS can exchange its learned model with other CSs to improve prediction accuracy without revealing actual datasets and reduce communication overhead among the CSs. Based on the energy demand prediction, we then design a multi-principal one-agent (MPOA) contract-based method. In particular, we formulate the CSs utility maximization as a non-collaborative energy contract problem in which each CS maximizes its utility under common constraints from the smart grid provider (SGP) and other CSs contracts. Then, we prove the existence of an equilibrium contract solution for all the CSs and develop an iterative algorithm at the SGP to find the equilibrium. Through simulation results using the dataset of CSs transactions in Dundee city, the United Kingdom between 2017 and 2018, we demonstrate that our proposed method can achieve the energy demand prediction accuracy improvement up to 24.63% and lessen communication overhead by 96.3% compared with other machine learning algorithms. Furthermore, our proposed method can outperform non-contract-based economic models by 35% and 36% in terms of the CSs utilities and social welfare of the network, respectively.
In this work, a new energy-efficiency performance metric is proposed for MIMO (multiple input multiple output) point-to-point systems. In contrast with related works on energy-efficiency, this metric translates the effects of using finite blocks for transmitting, using channel estimates at the transmitter and receiver, and considering the total power consumed by the transmitter instead of the radiated power only. The main objective pursued is to choose the best pre-coding matrix used at the transmitter in the following two scenarios~: 1) the one where imperfect channel state information (CSI) is available at the transmitter and receiver~; 2) the one where no CSI is available at the transmitter. In both scenarios, the problem of optimally tuning the total used power is shown to be non-trivial. In scenario 2), the optimal fraction of training time can be characterized by a simple equation. These results and others provided in the paper, along with the provided numerical analysis, show that the present work can therefore be used as a good basis for studying power control and resource allocation in energy-efficient multiuser networks.
Internet of Things (IoT) and Network Softwarization are fast becoming core technologies of information systems and network management for next generation Internet. The deployment and applications of IoT ranges from smart cities to urban computing, and from ubiquitous healthcare to tactile Internet. For this reason the physical infrastructure of heterogeneous network systems has become more complicated, and thus requires efficient and dynamic solutions for management, configuration, and flow scheduling. Network softwarization in the form of Software Defined Networks (SDN) and Network Function Virtualization (NFV) has been extensively researched for IoT in recent past. In this article we present a systematic and comprehensive review of virtualization techniques explicitly designed for IoT networks. We have classified the literature into software defined networks designed for IoT, function virtualization for IoT networks, and software defined IoT networks. These categories are further divided into works which present architectural, security, and management solutions. In addition, the paper highlights a number of short term and long term research challenges and open issues related to adoption of software defined Internet of things.