No Arabic abstract
We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate at the transition temperature. The splitting between the screening masses in iso-vector scalar and pseudoscalar channels is strongly reduced compared to the splitting at zero temperature and is actually consistent with zero within uncertainties. In this proceedings article we extend our studies to matrix elements and iso-singlet correlation functions. Furthermore, we present results on larger volumes, including first results at the physical pion mass.
We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.
We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_tau = 8 and spatial extent N_sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial correlators in the scalar and pseudo-scalar channels, as well as the corresponding susceptibilities. Furthermore, we also show results for the eigenvalue spectrum of the Dirac operator as a function of temperature, which can be connected to both U(1)_A and chiral symmetry restoration via Banks-Casher relations.
The chiral susceptibility, or the first derivative of the chiral condensate with respect to the quark mass, is often used as a probe for the QCD phase transition since the chiral condensate is an order parameter of $SU(2)_L times SU(2)_R$ symmetry breaking. However, the chiral condensate also breaks the axial $U(1)$ symmetry, which is usually not paid attention to as it is already broken by anomaly. We investigate the susceptibilities in the scalar and pseudoscalar channels in order to quantify how much the axial $U(1)$ anomaly contributes to the chiral phase transition. Employing a chirally symmetric lattice Dirac operator, and its eigenmode decomposition, we separate the axial $U(1)$ breaking effects from others. Our result in two-flavor QCD indicates that the chiral susceptibility is dominated by the axial $U(1)$ anomaly at temperatures $Tgtrsim 190$ MeV after the quadratically divergent constant is subtracted.
We investigate the nature of the chiral phase transition in the massless two-flavor QCD using the renormalization group improved gauge action and the Wilson quark action on $32^3times 16$, $24^3times 12$, and $16^3times 8$ lattices. We calculate the spacial and temporal propagators of the iso-triplet mesons in the pseudo-scalar ($PS$), scalar ($S$), vector ($V$) and axial-vector ($AV$) channels on the lattice of three sizes. We first verify that the RG scaling is excellently satisfied for all cases. This is consistent with the claim that the chiral phase transition is second order. Then we compare the spacial and temporal effective masses between the axial partners, i.e. $PS$ vs $S$ and $V$ vs $AV$, on each of the three size lattices. We find the effective masses of all of six cases for the axial partners agree remarkably. This is consistent with the claim that at least $Z_4$ subgroup of the $U_A(1)$ symmetry in addition to the $SU_A(2)$ symmetry is recovered at the chiral phase transition point.
The magnitude of the $U_A(1)$ symmetry breaking is expected to affect the nature of $N_f=2$ QCD chiral phase transition. The explicit breaking of chiral symmetry due to realistic light quark mass is small, so it is important to use chiral fermions on the lattice to understand the effect of $U_A(1)$ near the chiral crossover temperature, $T_c$. We report our latest results for the eigenvalue spectrum of 2+1 flavour QCD with dynamical Mobius domain wall fermions at finite temperature probed using the overlap operator on $32^3times 8$ lattice. We check how sensitive the low-lying eigenvalues are to the sea-light quark mass. We also present a comparison with the earlier independent results with domain wall fermions.