Majority Based TAS/MRC Scheme in Downlink NOMA Network with Channel Estimation Errors and Feedback Delay


Abstract in English

The antenna selection (AS) in non-orthogonal multiple access (NOMA) networks is still a challenging problem since finding optimal AS solution may not be available for all channel realizations and has quite computational complexity when it exists. For this reason, in this paper, we develop a new suboptimal solution, majority based transmit antenna selection (TAS-maj), with significant reduction in computational complexity. The TAS-maj basically selects the transmit antenna with the majority. It is more efficient when compared to previously proposed suboptimal AS algorithms, namely max-max-max (A^3) and max-min-max (AIA) because these schemes are merely interested in optimizing the performance of the strongest and weakest users, respectively at the price of worse performance for the remaining users. On the other hand, the TAS-maj scheme yields better performance for more than half of mobile users in the NOMA networks. In this paper, we consider a multiple-input multiple-output communication system, where all the nodes are equipped with multi-antenna. Besides the TAS-maj is employed at the base station, a maximal ratio combining (MRC) is also employed at each mobile user in order to achieve superior performance. The impact of the channel estimation errors (CEEs) and feedback delay (FD) on the performance of the TAS-maj/MRC scheme is studied in the NOMA network over Nakagami-m fading channels.

Download