Do you want to publish a course? Click here

Magnetic field vector ambiguity resolution in a quiescent prominence observed on two consecutive days

90   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic field vector measurements are always ambiguous, that is, two or more field vectors are solutions of the observed polarisation. The aim of the present paper is to solve the ambiguity by comparing the ambiguous field vectors obtained in the same prominence observed on two consecutive days. The effect of the solar rotation is to modify the scattering angle of the prominence radiation, which modifies the symmetry of the ambiguous solutions. This method, which is a kind of tomography, was successfully applied in the past to the average magnetic field vector of 20 prominences observed at the Pic du Midi. The aim of the present paper is to apply this method to a prominence observed with spatial resolution at the THEMIS telescope (European site at Izana, Tenerife Island). The magnetic field vector is measured by interpretation of the Hanle effect observed in the He I D3 5875.6 A line, within the horizontal field vector hypothesis for simplicity. The ambiguity is first solved by comparing the two pairs of solutions obtained for a big pixel determined by averaging the observed Stokes parameters in a large region at the prominence centre. Each pixel is then disambiguated by selecting the closest solution in a propagation from the prominence centre to the prominence boundary. The results previously obtained on averaged prominences are all recovered. The polarity is found to be inverse with a small angle of about -21{deg} between the magnetic field vector and the long axis of the filament. The magnetic field strength of about 6 G is found to slightly increase with height, as previously observed. The new result is the observed decrease with height, of the absolute value of the angle between the magnetic field vector and the long axis of the filament. This result is in excellent agreement with prominence magnetohydrodynamical models.



rate research

Read More

We present high-resolution observations of two kinds of dynamic behavior in a quiescent prominence using the New Vacuum Solar Telescope, i.e., Kelvin-Helmholtz instabilities (KHIs) and small-scale oscillations. The KHIs were identified as rapidly developed vortex-like structures with counter-clockwise/clockwise rotations in the Ha red-wing images at +0.3 A, which were produced by the strong shear-flows motions on the surface/interface of prominence plumes. The KHI growth rates are estimated to be about 0.0135 +(-)0.0004 and 0.0138 +(-) 0.0004. Our observational results further suggest that the shear velocities (i.e, supersonic) of the mass flows are fast enough to produce the strong deformation of the boundary and overcome the restraining surface tension force. This flow-driven instability might play a significant role in the process of plasma transfer in solar prominences. The small-scale oscillations perpendicular to the prominence threads are observed in the Ha line-center images. The oscillatory periods changed non-monotonically and showed two changing patterns, in which one firstly decreased slowly and then it changed to increase, while the other grew fast at the beginning and then it changed to decrease. Both of these two thread oscillations with changing periods were observed to be unstable for an entire cycle, and they were local in nature. All our findings indicate that the small-scale thread oscillations could be magnetohydrodynamic waves in the solar corona.
We address points recently discussed in Georgoulis (2011) in reference to Leka et al. (2009b). Most importantly, we find that the results of Georgoulis (2011) support a conclusion of Leka et al. (2009b): that limited spatial resolution and the presence of unresolved magnetic structures can challenge ambiguity- resolution algorithms. Moreover, the findings of both Metcalf et al. (2006) and Leka et al. (2009b) are confirmed in Georgoulis (2011): a methods performance can be diminished when the observed field fails to conform to that methods assumptions. The implication of boundaries in models of solar magnetic structures is discussed; we confirm that the distribution of the field components in the model used in Leka et al. (2009b) is closer to what is observed on the Sun than what is proposed in Georgoulis (2011). It is also shown that method does matter with regards to simulating limited spatial resolution and avoiding an inadvertent introduction of bias. Finally, the assignment of categories to data- analysis algorithms is revisited; we argue that assignments are only useful and elucidating when used appropriately.
We report on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer on Hinode. Several regions within the prominence are identified for further analysis. Selected profiles for lines with formation temperatures between log(T)=4.7-6.3, as well as their integrated intensities, are given. The line profiles are discussed. We pay special attention to the He II line which is blended with coronal lines. Our analysis confirms that depression in EUV lines can be interpreted by two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He II line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking on the coronal lines blended with the He II line. We estimate the contribution of the He II 256.32 line in the He II raster image to vary between ~44% and 70% of the rasters total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He II line are consistent with theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate for the central temperature of 8700 K, central pressure of 0.33 dyn/cm^2, and column mass of 2.5 10^{-4} g/cm^2. The corresponding theoretical hydrogen column density (10^{20} cm^{-2}) is about two orders of magnitude higher than those inferred from the opacity estimates at 195 {AA}. The non-LTE calculations indicate that the He II 256.32 {AA} line is essentially formed in the prominence-to-corona transition region by resonant scattering of the incident radiation.
132 - Suman K. Dhakal 2018
We report a study of a compound solar eruption that was associated with two consecutively erupting magnetic structures and correspondingly two distinct peaks, during impulsive phase, of an M-class flare (M8.5). Simultaneous multi-viewpoint observations from $textit{SDO}$, $textit{GOES}$ and $textit{STEREO-A}$ show that this compound eruption originated from two pre-existing sigmoidal magnetic structures lying along the same polarity inversion line. Observations of the associated pre-existing filaments further show that these magnetic structures are lying one on top of the other, separated by 12 Mm in height, in a so-called double-decker configuration. The high-lying magnetic structure became unstable and erupted first, appearing as an expanding hot channel seen at extreme ultraviolet wavelengths. About 12 minutes later, the low-lying structure also started to erupt and moved at an even faster speed compared to the high-lying one. As a result, the two erupting structures interacted and merged with each other, appearing as a single coronal mass ejection in the outer corona. We find that the double-decker configuration is likely caused by the persistent shearing motion and flux cancellation along the source active regions strong-gradient polarity inversion line. The successive destabilization of these two separate but closely spaced magnetic structures, possibly in the form of magnetic flux ropes, led to a compound solar eruption. The study of the compound eruption provides a unique opportunity to reveal the formation process, initiation, and evolution of complex eruptive structures in solar active regions.
During solar flares, magnetic energy can be converted into electromagnetic radiation from radio waves to $gamma$ rays. Enhancements in the continuum at visible wavelengths give rise to white-light flares, as well as continuum enhancements in the FUV and NUV passbands. In addition, the strong energy release in these events can lead to the rearrangement of the magnetic field at the photospheric level, causing morphological changes in large and stable magnetic structures like sunspots. In this context, we describe observations acquired by satellite instruments (IRIS, SDO/HMI, Hinode/SOT) and ground-based telescopes (ROSA/DST) during two consecutive C7.0 and X1.6 flares occurred in active region NOAA 12205 on 2014 November 7. The flare was accompanied by an eruption. The results of the analysis show the presence of continuum enhancements during the evolution of the events, observed both in ROSA images and in textit{IRIS} spectra. In the latter, a prominent blue-shifted component is observed at the onset of the eruption. We investigate the role played by the evolution of the $delta$ sunspots of the active region in the flare triggering, and finally we discuss the changes in the penumbrae surrounding these sunspots as a further consequence of these flares.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا