Do you want to publish a course? Click here

PAWS: Paraphrase Adversaries from Word Scrambling

143   0   0.0 ( 0 )
 Added by Yuan Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Existing paraphrase identification datasets lack sentence pairs that have high lexical overlap without being paraphrases. Models trained on such data fail to distinguish pairs like flights from New York to Florida and flights from Florida to New York. This paper introduces PAWS (Paraphrase Adversaries from Word Scrambling), a new dataset with 108,463 well-formed paraphrase and non-paraphrase pairs with high lexical overlap. Challenging pairs are generated by controlled word swapping and back translation, followed by fluency and paraphrase judgments by human raters. State-of-the-art models trained on existing datasets have dismal performance on PAWS (<40% accuracy); however, including PAWS training data for these models improves their accuracy to 85% while maintaining performance on existing tasks. In contrast, models that do not capture non-local contextual information fail even with PAWS training examples. As such, PAWS provides an effective instrument for driving further progress on models that better exploit structure, context, and pairwise comparisons.



rate research

Read More

Question paraphrase identification is a key task in Community Question Answering (CQA) to determine if an incoming question has been previously asked. Many current models use word embeddings to identify duplicate questions, but the use of topic models in feature-engineered systems suggests that they can be helpful for this task, too. We therefore propose two ways of merging topics with word embeddings (early vs. late fusion) in a new neural architecture for question paraphrase identification. Our results show that our system outperforms neural baselines on multiple CQA datasets, while an ablation study highlights the importance of topics and especially early topic-embedding fusion in our architecture.
We propose ParaSCI, the first large-scale paraphrase dataset in the scientific field, including 33,981 paraphrase pairs from ACL (ParaSCI-ACL) and 316,063 pairs from arXiv (ParaSCI-arXiv). Digging into characteristics and common patterns of scientific papers, we construct this dataset though intra-paper and inter-paper methods, such as collecting citations to the same paper or aggregating definitions by scientific terms. To take advantage of sentences paraphrased partially, we put up PDBERT as a general paraphrase discovering method. The major advantages of paraphrases in ParaSCI lie in the prominent length and textual diversity, which is complementary to existing paraphrase datasets. ParaSCI obtains satisfactory results on human evaluation and downstream tasks, especially long paraphrase generation.
Paraphrasing exists at different granularity levels, such as lexical level, phrasal level and sentential level. This paper presents Decomposable Neural Paraphrase Generator (DNPG), a Transformer-based model that can learn and generate paraphrases of a sentence at different levels of granularity in a disentangled way. Specifically, the model is composed of multiple encoders and decoders with different structures, each of which corresponds to a specific granularity. The empirical study shows that the decomposition mechanism of DNPG makes paraphrase generation more interpretable and controllable. Based on DNPG, we further develop an unsupervised domain adaptation method for paraphrase generation. Experimental results show that the proposed model achieves competitive in-domain performance compared to the state-of-the-art neural models, and significantly better performance when adapting to a new domain.
In this paper, we investigate the diversity aspect of paraphrase generation. Prior deep learning models employ either decoding methods or add random input noise for varying outputs. We propose a simple method Diverse Paraphrase Generation (D-PAGE), which extends neural machine translation (NMT) models to support the generation of diverse paraphrases with implicit rewriting patterns. Our experimental results on two real-world benchmark datasets demonstrate that our model generates at least one order of magnitude more diverse outputs than the baselines in terms of a new evaluation metric Jeffreys Divergence. We have also conducted extensive experiments to understand various properties of our model with a focus on diversity.
We introduce ParaBLEU, a paraphrase representation learning model and evaluation metric for text generation. Unlike previous approaches, ParaBLEU learns to understand paraphrasis using generative conditioning as a pretraining objective. ParaBLEU correlates more strongly with human judgements than existing metrics, obtaining new state-of-the-art results on the 2017 WMT Metrics Shared Task. We show that our model is robust to data scarcity, exceeding previous state-of-the-art performance using only $50%$ of the available training data and surpassing BLEU, ROUGE and METEOR with only $40$ labelled examples. Finally, we demonstrate that ParaBLEU can be used to conditionally generate novel paraphrases from a single demonstration, which we use to confirm our hypothesis that it learns abstract, generalized paraphrase representations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا