Do you want to publish a course? Click here

The complexity of Orion: an ALMA view III. The explosion impact

92   0   0.0 ( 0 )
 Added by Laurent Pagani
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The chemistry of complex organic molecules in interstellar dark clouds is still highly uncertain in part because of the lack of constraining observations. Orion is the closest massive star-forming region, and observations making use of ALMA allow us to separate the emission regions of various complex organic molecules (COMs) in both velocity and space. Orion also benefits from an exceptional situation, in that it is the site of a powerful explosive event that occurred 550 years ago. We show that the closely surrounding Kleinmann-Low region has clearly been influenced by this explosion; some molecular species have been pushed away from the densest parts while others have remained in close proximity. This dynamical segregation reveals the time dependence of the chemistry and, therefore allows us to better constrain the formation sequence of COMs and other species, including deuterated molecules.



rate research

Read More

Most massive stars form in dense clusters where gravitational interactions with other stars may be common. The two nearest forming massive stars, the BN object and Source I, located behind the Orion Nebula, were ejected with velocities of $sim$29 and $sim$13 km s$^{-1}$ about 500 years ago by such interactions. This event generated an explosion in the gas. New ALMA observations show in unprecedented detail, a roughly spherically symmetric distribution of over a hundred $^{12}$CO J=2$-$1 streamers with velocities extending from V$_{LSR}$ =$-$150 to +145 km s$^{-1}$. The streamer radial velocities increase (or decrease) linearly with projected distance from the explosion center, forming a `Hubble Flow confined to within 50 arcseconds of the explosion center. They point toward the high proper-motion, shock-excited H$_2$ and [Fe ii ] `fingertips and lower-velocity CO in the H$_2$ wakes comprising Orions `fingers. In some directions, the H$_2$ `fingers extend more than a factor of two farther from the ejection center than the CO streamers. Such deviations from spherical symmetry may be caused by ejecta running into dense gas or the dynamics of the N-body interaction that ejected the stars and produced the explosion. This $sim$10$^{48}$ erg event may have been powered by the release of gravitational potential energy associated with the formation of a compact binary or a protostellar merger. Orion may be the prototype for a new class of stellar explosion responsible for luminous infrared transients in nearby galaxies.
We report the first detection and high angular resolution (1.8 $times$ 1.1) imaging of acetic acid (CH$_3$COOH) and gGg$^{prime}$--ethylene glycol (gGg$^{prime}$(CH$_2$OH)$_2$) towards the Orion Kleinmann--Low nebula. The observations were carried out at $sim$1.3mm with ALMA during the Cycle~2. A notable result is that the spatial distribution of the acetic acid and ethylene glycol emission differs from that of the other O-bearing molecules within Orion-KL. Indeed, while the typical emission of O-bearing species harbors a morphology associated with a V-shape linking the Hot Core region to the Compact Ridge (with an extension towards the BN object), that of acetic acid and ethylene glycol mainly peaks at about 2 southwest from the hot core region (near sources I and n). We find that the measured CH$_3$COOH:aGg$^{prime}$(CH$_2$OH)$_2$ and CH$_3$COOH:gGg$^{prime}$(CH$_2$OH)$_2$ ratios differ from the ones measured towards the low-mass protostar IRAS 16293--2422 by more than one order of magnitude. Our best hypothesis to explain these findings is that CH$_3$COOH, aGg$^{prime}$(CH$_2$OH)$_2$ and gGg$^{prime}$(CH$_2$OH)$_2$ are formed on the icy-surface of grains and then released into the gas-phase, via co-desorption with water, due to a bullet of matter ejected during the explosive event that occurred in the heart of the Nebula about 500-700 years ago.
We present the first linear-polarization mosaicked observations performed by the Atacama Large Millimeter/submillimeter Array (ALMA). We mapped the Orion-KLeinmann-Low (Orion-KL) nebula using super-sampled mosaics at 3.1 and 1.3 mm as part of the ALMA Extension and Optimization of Capabilities (EOC) program. We derive the magnetic field morphology in the plane of the sky by assuming that dust grains are aligned with respect to the ambient magnetic field. At the center of the nebula, we find a quasi-radial magnetic field pattern that is aligned with the explosive CO outflow up to a radius of approximately 12 arc-seconds (~ 5000 au), beyond which the pattern smoothly transitions into a quasi-hourglass shape resembling the morphology seen in larger-scale observations by the James-Clerk-Maxwell Telescope (JCMT). We estimate an average magnetic field strength $langle Brangle = 9.4$ mG and a total magnetic energy of 2 x 10^45 ergs, which is three orders of magnitude less than the energy in the explosive CO outflow. We conclude that the field has been overwhelmed by the outflow and that a shock is propagating from the center of the nebula, where the shock front is seen in the magnetic field lines at a distance of ~ 5000 au from the explosion center.
155 - K. Kubiak , J. Alves , H. Bouy 2016
This paper continues our study of the foreground population to the Orion molecular clouds. The goal is to characterize the foreground population north of NGC 1981 and to investigate the star formation history in the large Orion star-forming region. We focus on a region covering about 25 square degrees, centered on the $epsilon$ Orionis supergiant (HD 37128, B0,Ia) and covering the Orion Belt asterism. We used a combination of optical (SDSS) and near-infrared (2MASS) data, informed by X-ray (textit{XMM-Newton}) and mid-infrared (WISE) data, to construct a suite of color-color and color-magnitude diagrams for all available sources. We then applied a new statistical multiband technique to isolate a previously unknown stellar population in this region. We identify a rich and well-defined stellar population in the surveyed region that has about 2,000 objects that are mostly M stars. We infer the age for this new population to be at least 5, Myr and likely $sim10$,Myr and estimate a total of about 2,500 members, assuming a normal IMF. This new population, which we call the Orion Belt population, is essentially extinction-free, disk-free, and its spatial distribution is roughly centered near $epsilon$ Ori, although substructure is clearly present. The Orion Belt population is likely the low-mass counterpart to the Ori OB Ib subgroup. Although our results do not rule out Blaauws sequential star formation scenario for Orion, we argue that the recently proposed blue streams scenario provides a better framework on which one can explain the Orion star formation region as a whole. We speculate that the Orion Belt population could represent the evolved counterpart of an Orion nebula-like cluster.
Forming high-mass stars have a significant effect on their natal environment. Their feedback pathways, including winds, outflows, and ionising radiation, shape the evolution of their surroundings which impacts the formation of the next generation of stars. They create or reveal dense pillars of gas and dust towards the edges of the cavities they clear. They are modelled in feedback simulations, and the sizes and shapes of the pillars produced are consistent with those observed. However, these models predict measurably different kinematics which provides testable discriminants. Here we present the first ALMA Compact Array (ACA) survey of 13 pillars in Carina, observed in $^{12}$CO, $^{13}$CO and C$^{18}$O J=2-1, and the 230 GHz continuum. The pillars in this survey were chosen to cover a wide range in properties relating to the amount and direction of incident radiation, proximity to nearby irradiating clusters and cloud rims, and whether they are detached from the cloud. With these data, we are able to discriminate between models. We generally find pillar velocity dispersions of $<$ 1 km s$^{-1}$ and that the outer few layers of molecular emission in these pillars show no significant offsets from each other, suggesting little bulk internal motions within the pillars. There are instances where the pillars are offset in velocity from their parental cloud rim, and some with no offset, hinting at a stochastic development of these motions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا