Do you want to publish a course? Click here

Transit least-squares survey - I. Discovery and validation of an Earth-sized planet in the four-planet system K2-32 near the 1:2:5:7 resonance

147   0   0.0 ( 0 )
 Added by Ren\\'e Heller
 Publication date 2019
  fields Physics
and research's language is English
 Authors Rene Heller




Ask ChatGPT about the research

We apply, for the first time, the Transit Least Squares (TLS) algorithm to search for new transiting exoplanets. TLS is a successor to the Box Least Squares (BLS) algorithm, which has served as a standard tool for the detection of periodic transits. In this proof-of-concept paper, we demonstrate how TLS finds small planets that have previously been missed. We showcase TLS capabilities using the K2 EVEREST-detrended light curve of the star K2-32 (EPIC205071984) that was known to have three transiting planets. TLS detects these known Neptune-sized planets K2-32b, d, and c in an iterative search and finds an additional transit signal with a high signal detection efficiency (SDE_TLS) of 26.1 at a period of 4.34882 (-0.00075, +0.00069) d. We show that this signal remains detectable (SDE_TLS = 13.2) with TLS in the K2SFF light curve of K2-32, which includes a less optimal detrending of the systematic trends. The signal is below common detection thresholds, however, if searched with BLS in the K2SFF light curve (SDE_BLS = 8.9) as in previous searches. Markov Chain Monte Carlo sampling shows that the radius of this candidate is 1.01 (-0.09, +0.10) Earth radii. We analyze its phase-folded transit light curve using the vespa software and calculate a false positive probability FPP = 3.1e-3, formally validating K2-32e as a planet. Taking into account the multiplicity boost of the system, FPP < 3.1e-4. K2-32 now hosts at least four planets that are very close to a 1:2:5:7 mean motion resonance chain. The offset of the orbital periods of K2-32e and b from a 1:2 mean motion resonance is in very good agreement with the sample of transiting multi-planet systems from Kepler, lending further credence to the planetary nature of K2-32e. We expect that TLS can find many more transits of Earth-sized and smaller planets in the Kepler data that have hitherto remained undetected with BLS and similar algorithms.



rate research

Read More

We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 sectors reveal three planets with radii ranging from 1 R$_oplus$ to 2.6 R$_oplus$ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enable us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of $1.19pm0.11$ R$_oplus$ and resides in the conservative habitable zone of its host star, where it receives a flux from its star that is approximately 86% of the Earths insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially-rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R$_oplus$), will be an excellent target for JWST and beyond. TESS is scheduled to return to the Southern Hemisphere and observe TOI-700 for an additional 11 sectors in its extended mission, which should provide further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.
We present follow-up observations of the K2-133 multi-planet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star - with tentative evidence of a fourth outer-planet orbiting at the edge of the temperate zone. Here we report on the validation of the presence of the fourth planet, determining a radius of $1.73_{-0.13}^{+0.14}$ R$_{oplus}$. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the stars temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario.
We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.
We present new radial velocities from Keck Observatory and both Newtonian and Keplerian solutions for the triple-planet system orbiting HD 37124. The orbital solution for this system has improved dramatically since the third planet was first reported in Vogt et al. 2005 with an ambiguous orbital period. We have resolved this ambiguity, and the outer two planets have an apparent period commensurability of 2:1. A dynamical analysis finds both resonant and non-resonant configurations consistent with the radial velocity data, and constrains the mutual inclinations of the planets to be less than about 30 degrees. We discuss HD 37124 in the context of the other 19 exoplanetary systems with apparent period commenserabilities, which we summarize in a table. We show that roughly one in three well-characterized multiplanet systems has a apparent low-order period commensuribility, which is more than would naively be expected if the periods of exoplanets in known multiplanet systems were drawn randomly from the observed distribution of planetary orbital periods.
We report the discovery of K2-98 b (EPIC 211391664 b), a transiting Neptune-sized planet monitored by the K2 mission during its campaign 5. We combine the K2 time-series data with ground-based photometric and spectroscopic follow-up observations to confirm the planetary nature of the object and derive its mass, radius, and orbital parameters. K2-98 b is a warm Neptune-like planet in a 10-day orbit around a V=12.2~mag F-type star with $M_star$=$ 1.074pm0.042$, $R_star$=$ 1.311 ^{+ 0.083} _{ - 0.048} $, and age of $5.2_{-1.0}^{+1.2}$~Gyr. We derive a planetary mass and radius of $M_mathrm{p}$=$ 32.2 pm 8.1 $ and $R_mathrm{p}$=$4.3^{+0.3}_{-0.2}$. K2-98 b joins the relatively small group of Neptune-sized planets whose both mass and radius have been derived with a precision better than 25 %. We estimate that the planet will be engulfed by its host star in $sim$3~Gyr, due to the evolution of the latter towards the red giant branch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا