Do you want to publish a course? Click here

CFSNet: Toward a Controllable Feature Space for Image Restoration

106   0   0.0 ( 0 )
 Added by Wei Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep learning methods have witnessed the great progress in image restoration with specific metrics (e.g., PSNR, SSIM). However, the perceptual quality of the restored image is relatively subjective, and it is necessary for users to control the reconstruction result according to personal preferences or image characteristics, which cannot be done using existing deterministic networks. This motivates us to exquisitely design a unified interactive framework for general image restoration tasks. Under this framework, users can control continuous transition of different objectives, e.g., the perception-distortion trade-off of image super-resolution, the trade-off between noise reduction and detail preservation. We achieve this goal by controlling the latent features of the designed network. To be specific, our proposed framework, named Controllable Feature Space Network (CFSNet), is entangled by two branches based on different objectives. Our framework can adaptively learn the coupling coefficients of different layers and channels, which provides finer control of the restored image quality. Experiments on several typical image restoration tasks fully validate the effective benefits of the proposed method. Code is available at https://github.com/qibao77/CFSNet.



rate research

Read More

Modulating image restoration level aims to generate a restored image by altering a factor that represents the restoration strength. Previous works mainly focused on optimizing the mean squared reconstruction error, which brings high reconstruction accuracy but lacks finer texture details. This paper presents a Controllable Unet Generative Adversarial Network (CUGAN) to generate high-frequency textures in the modulation tasks. CUGAN consists of two modules -- base networks and condition networks. The base networks comprise a generator and a discriminator. In the generator, we realize the interactive control of restoration levels by tuning the weights of different features from different scales in the Unet architecture. Moreover, we adaptively modulate the intermediate features in the discriminator according to the severity of degradations. The condition networks accept the condition vector (encoded degradation information) as input, then generate modulation parameters for both the generator and the discriminator. During testing, users can control the output effects by tweaking the condition vector. We also provide a smooth transition between GAN and MSE effects by a simple transition method. Extensive experiments demonstrate that the proposed CUGAN achieves excellent performance on image restoration modulation tasks.
114 - Xin Li , Xin Jin , Jianxin Lin 2020
Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restoration performance. To decompose such interference, we introduce the concept of Disentangled Feature Learning to achieve the feature-level divide-and-conquer of hybrid distortions. Specifically, we propose the feature disentanglement module (FDM) to distribute feature representations of different distortions into different channels by revising gain-control-based normalization. We also propose a feature aggregation module (FAM) with channel-wise attention to adaptively filter out the distortion representations and aggregate useful content information from different channels for the construction of raw image. The effectiveness of the proposed scheme is verified by visualizing the correlation matrix of features and channel responses of different distortions. Extensive experimental results also prove superior performance of our approach compared with the latest HD-IR schemes.
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious -- a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection and optimized by metric learning as the labeling progresses. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that our approach can surpass the accuracy of state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, it achieves 91.5% accuracy in a known semantic segmentation dataset, Cityscapes, being 74.75 times faster than the original annotation procedure. The appendix presents additional qualitative results. Code and video demonstration will be released upon publication.
Convolutional neural network has recently achieved great success for image restoration (IR) and also offered hierarchical features. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in IR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via densely connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism. To adaptively learn more effective features from preceding and current local features and stabilize the training of wider network, we proposed local feature fusion in RDB. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. We demonstrate the effectiveness of RDN with several representative IR applications, single image super-resolution, Gaussian image denoising, image compression artifact reduction, and image deblurring. Experiments on benchmark and real-world datasets show that our RDN achieves favorable performance against state-of-the-art methods for each IR task quantitatively and visually.
137 - Man Zhou , Zeyu Xiao , Xueyang Fu 2021
Deep learning provides a new avenue for image restoration, which demands a delicate balance between fine-grained details and high-level contextualized information during recovering the latent clear image. In practice, however, existing methods empirically construct encapsulated end-to-end mapping networks without deepening into the rationality, and neglect the intrinsic prior knowledge of restoration task. To solve the above problems, inspired by Taylors Approximations, we unfold Taylors Formula to construct a novel framework for image restoration. We find the main part and the derivative part of Taylors Approximations take the same effect as the two competing goals of high-level contextualized information and spatial details of image restoration respectively. Specifically, our framework consists of two steps, correspondingly responsible for the mapping and derivative functions. The former first learns the high-level contextualized information and the later combines it with the degraded input to progressively recover local high-order spatial details. Our proposed framework is orthogonal to existing methods and thus can be easily integrated with them for further improvement, and extensive experiments demonstrate the effectiveness and scalability of our proposed framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا