Several post-detection approaches to the mitigation of radio-frequency interference (RFI) are compared by applying them to the strong RFI from the Iridium satellites. These provide estimates for the desired signal in the presence of RFI, by exploiting distinguishing characteristics of the RFI, such as its polarization, statistics, and periodicity. Our data are dynamic spectra with full Stokes parameters and 1 ms time resolution. Moreover, since most man-made RFI is strongly polarized, we use the data to compare its unpolarized component with its Stokes I. This approach on its own reduces the RFI intensity by many tens of dBs. A comprehensive approach that also recognizes non-Gaussian statistics, and the time and frequency structure inherent in the RFI permits exceedingly effective post-detection excision provided full Stokes intensity data are available.