Adiabatic population transfer of dressed spin states with quantum optimal control


Abstract in English

We report theoretical studies of adiabatic population transfer using dressed spin states. Quantum optimal control using the algorithm of Chopped Random Basis (CRAB) has been implemented in a negatively charged diamond nitrogen vacancy center that is coupled to a strong and resonant microwave field. We show that the dressed spin states are highly effective in suppressing effects of spin dephasing on adiabatic population transfer. The numerical simulation also demonstrates that CRAB-based quantum optimal control can enable an efficient and robust adiabatic population transfer.

Download