No Arabic abstract
Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-shot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.
Relation classification aims to extract semantic relations between entity pairs from the sentences. However, most existing methods can only identify seen relation classes that occurred during training. To recognize unseen relations at test time, we explore the problem of zero-shot relation classification. Previous work regards the problem as reading comprehension or textual entailment, which have to rely on artificial descriptive information to improve the understandability of relation types. Thus, rich semantic knowledge of the relation labels is ignored. In this paper, we propose a novel logic-guided semantic representation learning model for zero-shot relation classification. Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules. Extensive experimental results demonstrate that our method can generalize to unseen relation types and achieve promising improvements.
Zero-shot text classification (0Shot-TC) is a challenging NLU problem to which little attention has been paid by the research community. 0Shot-TC aims to associate an appropriate label with a piece of text, irrespective of the text domain and the aspect (e.g., topic, emotion, event, etc.) described by the label. And there are only a few articles studying 0Shot-TC, all focusing only on topical categorization which, we argue, is just the tip of the iceberg in 0Shot-TC. In addition, the chaotic experiments in literature make no uniform comparison, which blurs the progress. This work benchmarks the 0Shot-TC problem by providing unified datasets, standardized evaluations, and state-of-the-art baselines. Our contributions include: i) The datasets we provide facilitate studying 0Shot-TC relative to conceptually different and diverse aspects: the ``topic aspect includes ``sports and ``politics as labels; the ``emotion aspect includes ``joy and ``anger; the ``situation aspect includes ``medical assistance and ``water shortage. ii) We extend the existing evaluation setup (label-partially-unseen) -- given a dataset, train on some labels, test on all labels -- to include a more challenging yet realistic evaluation label-fully-unseen 0Shot-TC (Chang et al., 2008), aiming at classifying text snippets without seeing task specific training data at all. iii) We unify the 0Shot-TC of diverse aspects within a textual entailment formulation and study it this way. Code & Data: https://github.com/yinwenpeng/BenchmarkingZeroShot
Recent years have seen great success in the use of neural seq2seq models on the text-to-SQL task. However, little work has paid attention to how these models generalize to realistic unseen data, which naturally raises a question: does this impressive performance signify a perfect generalization model, or are there still some limitations? In this paper, we first diagnose the bottleneck of text-to-SQL task by providing a new testbed, in which we observe that existing models present poor generalization ability on rarely-seen data. The above analysis encourages us to design a simple but effective auxiliary task, which serves as a supportive model as well as a regularization term to the generation task to increase the models generalization. Experimentally, We evaluate our models on a large text-to-SQL dataset WikiSQL. Compared to a strong baseline coarse-to-fine model, our models improve over the baseline by more than 3% absolute in accuracy on the whole dataset. More interestingly, on a zero-shot subset test of WikiSQL, our models achieve 5% absolute accuracy gain over the baseline, clearly demonstrating its superior generalizability.
In this paper, we study zero-shot learning in audio classification via semantic embeddings extracted from textual labels and sentence descriptions of sound classes. Our goal is to obtain a classifier that is capable of recognizing audio instances of sound classes that have no available training samples, but only semantic side information. We employ a bilinear compatibility framework to learn an acoustic-semantic projection between intermediate-level representations of audio instances and sound classes, i.e., acoustic embeddings and semantic embeddings. We use VGGish to extract deep acoustic embeddings from audio clips, and pre-trained language models (Word2Vec, GloVe, BERT) to generate either label embeddings from textual labels or sentence embeddings from sentence descriptions of sound classes. Audio classification is performed by a linear compatibility function that measures how compatible an acoustic embedding and a semantic embedding are. We evaluate the proposed method on a small balanced dataset ESC-50 and a large-scale unbalanced audio subset of AudioSet. The experimental results show that classification performance is significantly improved by involving sound classes that are semantically close to the test classes in training. Meanwhile, we demonstrate that both label embeddings and sentence embeddings are useful for zero-shot learning. Classification performance is improved by concatenating label/sentence embeddings generated with different language models. With their hybrid concatenations, the results are improved further.
This paper studies how to automatically generate a natural language text that describes the facts in knowledge graph (KG). Considering the few-shot setting, we leverage the excellent capacities of pretrained language models (PLMs) in language understanding and generation. We make three major technical contributions, namely representation alignment for bridging the semantic gap between KG encodings and PLMs, relation-biased KG linearization for deriving better input representations, and multi-task learning for learning the correspondence between KG and text. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our model on KG-to-text generation task. In particular, our model outperforms all comparison methods on both fully-supervised and few-shot settings. Our code and datasets are available at https://github.com/RUCAIBox/Few-Shot-KG2Text.