Do you want to publish a course? Click here

Ab initio short-range-correlation scaling factors from light to medium-mass nuclei

183   0   0.0 ( 0 )
 Added by Diego Lonardoni
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

High-energy scattering processes, such as deep inelastic scattering (DIS) and quasielastic (QE) scattering provide a wealth of information about the structure of atomic nuclei. The remarkable discovery of the empirical linear relationship between the slope of the European Muon Collaboration (EMC) effect in DIS and the short-range-correlation (SRC) scaling factors $a_2$ in QE kinematics is naturally explained in terms of scale separation in effective field theory. This explanation has powerful consequences, allowing us to calculate and predict SRC scaling factors from ab initio low-energy nuclear theory. We present ab initio calculations of SRC scaling factors for a nucleus $A$ relative to the deuteron $a_2(A/d)$ and relative to $^3rm He$ $a_2(A/^3rm He)$ in light and medium-mass nuclei. Our framework further predicts that the EMC effect and SRC scaling factors have minimal or negligible isovector corrections.

rate research

Read More

Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the $J^pi = {1/2}^-,{3/2}^-,{7/2}^-,{3/2}^+$ states in $^{17,23,25}$O, and - contrary to naive shell-model expectations - the level ordering of the $J^pi = {3/2}^+,{5/2}^+,{9/2}^+$ states in $^{53,55,61}$Ca.
The single-particle spectrum of the two nuclei 133Sb and 101Sn is studied within the framework of the time-dependent degenerate linked-diagram perturbation theory starting from a class of onshell-equivalent realistic nucleon-nucleon potentials. These potentials are derived from the CD-Bonn interaction by using the so-called V-low-k approach with various cutoff momenta. The results obtained evidence the crucial role of short-range correlations in producing the correct 2s1d0g0h shell structure.
202 - S. Quaglioni 2015
An {em ab initio} (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review {em ab initio} calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the {em ab initio} no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the $A$-nucleon system are coupled to $(A-a)+a$ target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding the role of the QCD in generating nuclear forces at short distances as well as understanding the dynamics of the super-dense cold nuclear matter relevant to the interior of neutron stars. With an emergence of high energy electron and proton beams there is a significant recent progress in high energy nuclear scattering experiments aimed at studies of short-range structure of nuclei. This in turn stimulated new theoretical studies resulting in the observation of several new phenomena specific to the short range structure of nuclei. In this work we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and their importance for advancing our understanding of the dynamics of nuclear interactions at small distances.
109 - B. S. Hu , Q. Wu , Z. H. Sun 2019
We have developed a novel ab initio Gamow in-medium similarity renormalization group (Gamow IMSRG) in the complex-energy Berggren framework. The advanced Gamow IMSRG is capable of describing the resonance and nonresonant continuum properties of weakly bound and unbound nuclear many-body systems. As test grounds, carbon and oxygen isotopes have been calculated with chiral two- and three-nucleon forces from the effective field theory. Resonant states observed in the neutron-dripline 24O are well reproduced. The halo structure of the known heaviest Borromean nucleus 22C is clearly seen by calculating the density distribution in which the continuum s channel plays a crucial role. Furthermore, we predict low-lying resonant excited states in 22C. The Gamow IMSRG provides tractable ab initio calculations of weakly bound and unbound open quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا