Do you want to publish a course? Click here

Interpretation of the resonant drag instability of dust settling in protoplanetary disc

57   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently discovered resonant drag instability of dust settling in protoplanetary disc is considered as the mode coupling of subsonic gas-dust mixture perturbations. This mode coupling is coalescence of two modes with nearly equal phase velocities: the first mode is inertial wave having positive energy, while the second mode is a settling dust wave (SDW) having negative energy as measured in the frame of gas environment being at rest in vertical hydrostatic equilibrium. SDW is a trivial mode produced by the bulk settling of dust, which transports perturbations of dust density. The phase velocity of SDW is equal to the bulk settling velocity times the cosine of the angle formed by the wave vector and the rotation axis. In this way, the bulk settling of dust makes possible the coupling of SDW with the inertial wave and the onset of the instability. In accordance with the concept of the mode coupling, the instability growth rate is proportional to the square root of the dispersion equation coupling term, which itself contains the small mass fraction of dust in gas-dust mixture, the squared radial wavenumber of the modes, and the squared bulk settling velocity. Thus, the higher is the bulk settling velocity, the heavier clumps of dust can be aggregated by the instability of the same rate.



rate research

Read More

63 - V.V. Zhuravlev 2020
Damping of the previously discovered resonant drag instability (RDI) of dust streaming in protoplanetary disc is studied using the local approach to dynamics of gas-dust perturbations in the limit of the small dust fraction. Turbulence in a disc is represented by the effective viscosity and diffusivity in equations of motion for gas and dust, respectively. In the standard case of the Schmidt number (ratio of the effective viscosity to diffusivity) Sc = 1, the reduced description of RDI in terms of the inertial wave (IW) and the streaming dust wave (SDW) falling in resonance with each other reveals that damping solution differs from the inviscid solution simply by adding the characteristic damping frequency to its growth rate. RDI is fully suppressed at the threshold viscosity, which is estimated analytically, first, for radial drift, next, for vertical settling of dust, and at last, in the case of settling combined with radial drift of the dust. In the last case, RDI survives up to the highest threshold viscosity, with a greater excess for smaller solids. Once Sc eq 1, a new instability specific for dissipative perturbations on the dust settling background emerges. This instability of the quasi-resonant nature is referred to as settling viscous instability (SVI). The mode akin to SDW (IW) becomes growing in a region of long waves provided that Sc > 1 (Sc < 1). SVI leads to an additional increase of the threshold viscosity.
52 - V.V. Zhuravlev 2019
The recently discovered resonant drag instability (RDI) of dust streaming in protoplanetary disc is considered as the mode coupling of subsonic gas-dust mixture perturbations. This mode coupling is coalescence of two modes with nearly equal phase velocities: inertial wave (IW) having positive energy and a streaming dust wave (SDW) having negative energy as measured in the frame of gas environment being at rest in vertical hydrostatic equilibrium. SDW is a trivial mode produced by the bulk streaming of dust, which transports perturbations of dust density. In this way, settling combined with radial drift of the dust makes possible coupling of SDW with IW and the onset of the instability. In accordance with the concept of the mode coupling, RDI growth rate is proportional to the square root of the coupling term of the dispersion equation, which itself is proportional to mass fraction of dust, $fll 1$. This clarifies why RDI growth rate $propto f^{1/2}$. When SDW has positive energy, its resonance with IW provides an avoided crossing instead of the mode coupling. In the high wavenumber limit RDI with unbounded growth rate $propto f^{1/3}$ is explained by the triple mode coupling, which is coupling of SDW with two IW. It coexists with a new quasi-resonant instability accompanied by bonding of two oppositely propagating low-frequency IW. The mode coupling does not exist for dust streaming only radially in a disc. In this case RDI is provided by the obscured mechanism associated with the inertia of solids.
The streaming instability (SI) has been extensively studied in the linear and non-linear regimes as a mechanism to concentrate solids and trigger planetesimal formation in the midplane of protoplanetary discs. A related dust settling instability (DSI) applies to particles while settling towards the midplane. The DSI has previously been studied in the linear regime, with predictions that it could trigger particle clumping away from the midplane. This work presents a range of linear calculations and non-linear simulations, performed with FARGO3D, to assess conditions for DSI growth. We expand on previous linear analyses by including particle size distributions and performing a detailed study of the amount of background turbulence needed to stabilize the DSI. When including binned size distributions, the DSI often produces converged growth rates with fewer bins than the standard SI. With background turbulence, we find that the most favorable conditions for DSI growth are weak turbulence, characterized by $alpha lesssim 10^{-6}$ with intermediate-sized grains that settle from one gas scale-height. These conditions could arise during a sudden decrease in disc turbulence following an accretion outburst. Ignoring background turbulence, we performed a parameter survey of local 2D DSI simulations. Particle clumping was either weak or occurred slower than particles settle. Clumping was reduced by a factor of two in a comparison 3D simulation. Overall, our results strongly disfavor the hypothesis that the DSI significantly promotes planetesimal formation. Non-linear simulations of the DSI with different numerical methods could support or challenge these findings.
118 - Mir Abbas Jalali 2013
We use the Fokker-Planck equation and model the dispersive dynamics of solid particles in annular protoplanetary disks whose gas component is more massive than the particle phase. We model particle--gas interactions as hard sphere collisions, determine the functional form of diffusion coefficients, and show the existence of two global unstable modes in the particle phase. These modes have spiral patterns with the azimuthal wavenumber $m=1$ and rotate slowly. We show that in ring-shaped disks, the phase space density of solid particles increases linearly in time towards an accumulation point near the location of pressure maximum, while instabilities grow exponentially. Therefore, planetesimals and planetary cores can be efficiently produced near the peaks of unstable density waves. In this mechanism, particles migrating towards the accumulation point will not participate in the formation of planets, and should eventually form a debris ring like the main asteroid belt or classical Kuiper belt objects. We present the implications of global instabilities to the formation of ice giants and terrestrial planets in the solar system.
115 - Min-Kai Lin 2019
Enhancing the local dust-to-gas ratio in protoplanetary discs is a necessary first step to planetesimal formation. In laminar discs, dust settling is an efficient mechanism to raise the dust-to-gas ratio at the disc midplane. However, turbulence, if present, can stir and lift dust particles, which ultimately hinders planetesimal formation. In this work, we study dust settling in protoplanetary discs with hydrodynamic turbulence sustained by the vertical shear instability. We perform axisymmetric numerical simulations to investigate the effect of turbulence, particle size, and solid abundance or metallicity on dust settling. We highlight the positive role of drag forces exerted onto the gas by the dust for settling to overcome the vertical shear instability. In typical disc models we find particles with a Stokes number $sim 10^{-3}$ can sediment to $lesssim 10%$ of the gas scale-height, provided that $Sigma_mathrm{d}/Sigma_mathrm{g}gtrsim 0.02$-$0.05$, where $Sigma_mathrm{d,g}$ are the surface densities in dust and gas, respectively. This coincides with the metallicity condition for small particles to undergo clumping via the streaming instability. Super-solar metallicities, at least locally, are thus required for a self-consistent picture of planetesimal formation. Our results also imply that dust rings observed in protoplanetary discs should have smaller scale-heights than dust gaps, provided that the metallicity contrast between rings and gaps exceed the corresponding contrast in gas density.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا