No Arabic abstract
We study a one-dimensional disordered Bose fluid using bosonization, the replica method and a nonperturbative functional renormalization-group approach. The Bose-glass phase is described by a fully attractive strong-disorder fixed point characterized by a singular disorder correlator whose functional dependence assumes a cuspy form that is related to the existence of metastable states. At nonzero momentum scale, quantum tunneling between these metastable states leads to a rounding of the nonanalyticity in a quantum boundary layer that encodes the existence of rare superfluid regions responsible for the $omega^2$ behavior of the (dissipative) conductivity in the low-frequency limit. These results can be understood within the droplet picture put forward for the description of glassy (classical) systems.
We study a one-dimensional disordered Bose fluid using bosonization, the replica method and a nonperturbative functional renormalization-group approach. We find that the Bose-glass phase is described by a fully attractive strong-disorder fixed point characterized by a singular disorder correlator whose functional dependence assumes a cuspy form that is related to the existence of metastable states. At nonzero momentum scale $k$, quantum tunneling between the ground state and low-lying metastable states leads to a rounding of the cusp singularity into a quantum boundary layer (QBL). The width of the QBL depends on an effective Luttinger parameter $K_ksim k^theta$ that vanishes with an exponent $theta=z-1$ related to the dynamical critical exponent $z$. The QBL encodes the existence of rare superfluid regions, controls the low-energy dynamics and yields a (dissipative) conductivity vanishing as $omega^2$ in the low-frequency limit. These results reveal the glassy properties (pinning, shocks or static avalanches) of the Bose-glass phase and can be understood within the droplet picture put forward for the description of glassy (classical) systems.
We investigate magnetic properties of strongly interacting bosonic mixtures confined in one dimensional geometries, focusing on recently realized Rb-K gases with tunable interspecies interactions. By combining analytical perturbation theory results with density-matrix-renormalization group calculations, we provide quantitative estimates of the ground state phase diagram as a function of the relevant microscopic quantities, identifying the more favorable experimental regimes in order to access the various magnetic phases. Finally, we qualitatively discuss the observability of such phases in realistic setups when finite temperature effects have to be considered.
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose gases, we present the experimental measurement of the full momentum-space density correlations $langle delta n_p delta n_{p}rangle$, which are related to the two-body momentum correlation function. Our data span the weakly interacting region of the phase diagram, going from the the ideal Bose gas regime to the quasicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicondensate regime is however characterized by the presence of negative correlations between different momenta, in contrast to Bogolyubov theory for Bose condensates, predicting positive correlations between opposite momenta. Our data are in good agreement with {it ab-initio} calculations.