No Arabic abstract
We study the quantum mechanical evolution of the tensor perturbations during inflation with non-linear tensor interactions. We first obtain the Lindblad terms generated by non-linear interactions by tracing out unobservable sub-horizon modes. Then we calculate explicitly the reduced density matrix for the super-horizon modes, and show that the probability of maintaining the unitarity of the squeezed state decreases in time. The decreased probability is transferred to other elements of the reduced density matrix including off-diagonal ones, so the evolution of the reduced density matrix describes the quantum-to-classical transition of the tensor perturbations. This is different from the classicality accomplished by the squeezed state, the suppression of the non-commutative effect, which is originated from the quadratic, linear interaction, and also maintains the unitarity. The quantum-to-classical transition occurs within 5 - 10 e-folds, faster than the curvature perturbation.
We study the Wigner function for the inflationary tensor perturbation defined in the real phase space. We compute explicitly the Wigner function including the contributions from the cubic self-interaction Hamiltonian of tensor perturbations. Then we argue that it is no longer an appropriate description for the probability distribution in the sense that quantum nature allows negativity around vanishing phase variables. This comes from the non-Gaussian wavefunction in the mixed state as a result of the non-linear interaction between super- and sub-horizon modes. We also show that this is related to the explicit infrared divergence in the Wigner function, in contrast to the trace of the density matrix.
Extending our previous work on the robustness of inflation to perturbations in the scalar field, we investigate the effects of perturbations in the transverse traceless part of the extrinsic curvature on the evolution of an inhomogeneous inflaton field. Focusing on small field models, we show that these additional metric inhomogeneities initially reduce the total number of e-folds as the amplitude increases, but that the reduction saturates and even reverses above a certain amplitude. We present an argument that this is due to the presence of a large initial Hubble friction when metric perturbations are large.
We consider the non-commutative inflation model of [3] in which it is the unconventional dispersion relation for regular radiation which drives the accelerated expansion of space. In this model, we study the evolution of linear cosmological perturbations through the transition between the phase of accelerated expansion and the regular radiation-dominated phase of Standard Cosmology, the transition which is analogous to the reheating period in scalar field-driven models of inflation. If matter consists of only a single non-commutative radiation fluid, then the curvature perturbations are constant on super-Hubble scales. On the other hand, if we include additional matter fields which oscillate during the transition period, e.g. scalar moduli fields, then there can be parametric amplification of the amplitude of the curvature perturbations. We demonstrate this explicitly by numerically solving the full system of perturbation equations in the case where matter consists of both the non-commutative radiation field and a light scalar field which undergoes oscillations. Our model is an example where the parametric resonance of the curvature fluctuations is driven by the oscillations not of the inflaton field, but of the entropy mode
We investigate the linear cosmological perturbations in Hov{r}ava-Lifshitz gravity with a scalar field. Starting from the most general expressions of the metric perturbations as well as that of a canonical scalar field, we decompose the scalar, vector and tensor parts of the perturbed action. By reducing the Hamiltonian, we find that there are two independent degrees of freedom for the tensor perturbations while none for the vector perturbations. For the scalar perturbations, the remaining number of degrees of freedom, which are all gauge invariant, depends on whether the projectable condition is applied or not. For both cases, we lose the time reparametrization symmetry of any kind.
If the graviton is the only high spin particle present during inflation, then the form of the observable tensor three-point function is fixed by de Sitter symmetry at leading order in slow-roll, regardless of the theory, to be a linear combination of two possible shapes. This is because there are only a fixed number of possible on-shell cubic structures through which the graviton can self-interact. If additional massive spin-2 degrees of freedom are present, more cubic interaction structures are possible, including those containing interactions between the new fields and the graviton, and self-interactions of the new fields. We study, in a model-independent way, how these interactions can lead to new shapes for the tensor bispectrum. In general, these shapes cannot be computed analytically, but for the case where the only new field is a partially massless spin-2 field we give simple expressions. It is possible for the contribution from additional spin-2 fields to be larger than the intrinsic Einstein gravity bispectrum and provides a mechanism for enhancing the size of the graviton bispectrum relative to the graviton power spectrum.