Do you want to publish a course? Click here

First Operation of a Resistive Shell Liquid Argon Time Projection Chamber -- A new Approach to Electric-Field Shaping

62   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new technology for the shaping of the electric field in Time Projection Chambers (TPCs) using a carbon-loaded polyimide foil. This technology allows for the minimisation of passive material near the active volume of the TPC and thus is capable to reduce background events originating from radioactive decays or scattering on the material itself. Furthermore, the high and continuous electric resistivity of the foil limits the power dissipation per unit area and minimizes the risks of damages in the case of an electric field breakdown. Replacing the conventional field cage with a resistive plastic film structure called shell decreases the number of components within the TPC and therefore reduces the potential points of failure when operating the detector. A prototype liquid argon (LAr) TPC with such a resistive shell and with a cathode made of the same material was successfully tested for long term operation with electric field values up to about 1.5 kV/cm. The experiment shows that it is feasible to successfully produce and shape the electric field in liquefied noble-gas detectors with this new technology.



rate research

Read More

This manuscript describes the commissioning of the Mini-CAPTAIN liquid argon detector in a neutron beam at the Los Alamos Neutron Science Center (LANSCE), which led to a first measurement of high-energy neutron interactions in argon. The Mini-CAPTAIN detector consists of a Time Projection Chamber (TPC) with an accompanying photomultiplier tube (PMT) array sealed inside a liquid-argon-filled cryostat. The liquid argon is constantly purified and recirculated in a closed-loop cycle during operation. The specifications and assembly of the detector subsystems and an overview of their performance in a neutron beam are reported.
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
In this paper we give a thorough description of a liquid argon time projection chamber designed, built and operated at Yale. We present results from a calibration run where cosmic rays have been observed in the detector, a first in the US.
This paper reports on laser-induced multiphoton ionization at 266 nm of liquid argon in a time projection chamber (LAr TPC) detector. The electron signal produced by the laser beam is a formidable tool for the calibration and monitoring of next-generation large-mass LAr TPCs. The detector that we designed and tested allowed us to measure the two-photon absorption cross-section of LAr with unprecedented accuracy and precision: sigma_ex=(1.24pm 0.10stat pm 0.30syst) 10^{-56} cm^4s{-1}.
Finding unambiguous evidence of dark matter interactions in a particle detector is a main objective of physics research. The liquid argon time projection chamber technique for the detection of Weakly Interacting Massive Particles (WIMP) allows sensitivities down to the so-called neutrino floor for high and low WIMP masses. Based on the successful operation of the DarkSide-50 detector, a new and more sensitive experiment, DarkSide-20k, was designed and is now under construction. A thorough understanding of the DarkSide-50 detector response to events classified as dark matter as well as all other interactions is essential for an optimal design of the new experiment. In this paper, we report on a particular set of events, for which scintillation-ionization signals are observed in association with signals from single or few isolated electrons. We identified and provided an interpretation for two event types in which electrons are produced via photoelectric effect on the cathode electrode and in the bulk liquid. Events with photoelectric emissions are observed in association with most interactions with large energy depositions in the detector. From the measured rate of these events, we determine the photo-ionization probability, or photoelectric quantum efficiency, of tetraphenyl butadiene (TPB) at wavelengths around 128 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا