Do you want to publish a course? Click here

High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations

113   0   0.0 ( 0 )
 Added by Thomas Olsen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent observation of ferromagnetic order in two-dimensional (2D) materials has initiated a booming interest in the subject of 2D magnetism. In contrast to bulk materials, 2D materials can only exhibit magnetic order in the presence of magnetic anisotropy. In the present work we have used the Computational 2D Materials Database (C2DB) to search for new ferromagnetic 2D materials using the spinwave gap as a simple descriptor that accounts for the role of magnetic anisotropy. In addition to known compounds we find 12 novel insulating materials that exhibit magnetic order at finite temperatures. For these we evaluate the critical temperatures from classical Monte Carlo simulations of a Heisenberg model with exchange and anisotropy parameters obtained from first principles. Starting from 150 stable ferromagnetic 2D materials we find five candidates that are predicted to have critical temperatures exceeding that of CrI3. We also study the effect of Hubbard corrections in the framework of DFT+U and find that the value of U can have a crucial influence on the prediction of magnetic properties. Our work provides new insight into 2D magnetism and identifies a new set of promising monolayers for experimental investigation.



rate research

Read More

We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 different crystal structures. Material properties are systematically calculated by state-of-the art density functional theory and many-body perturbation theory (G$_0!$W$!_0$ and the Bethe-Salpeter Equation for $sim$200 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.
The high-throughput (HT) computational method is a useful tool to screen high performance functional materials. In this work, using the deformation potential method under the single band model, we evaluate the carrier relaxation time and establish an electrical descriptor (c{hi}) characterized by the carrier effective masses based on the simple rigid band approximation. The descriptor (c{hi}) can be used to reasonably represent the maximum power factor without solving the electron Boltzmann transport equation. Additionally, the Gruneisen parameter ({gamma}), a descriptor of the lattice anharmonicity and lattice thermal conductivity, is efficiently evaluated using the elastic properties, omitting the costly phonon calculations. Applying two descriptors (c{hi} and {gamma}) to binary chalcogenides, we HT compute 243 semiconductors and screen 50 promising thermoelectric materials. For these theoretically determined compounds, we successfully predict some previously experimentally and theoretically investigated promising thermoelectric materials. Additionally, 9 p-type and 14 n-type previously unreported binary chalcogenides are also predicted as promising thermoelectric materials. Our work provides not only new thermoelectric candidates with perfect crystalline structure for the future investigations, but also reliable descriptors to HT screen high performance thermoelectric materials.
Two-dimensional topological materials (TMs) have a variety of properties that make them attractive for applications including spintronics and quantum computation. However, there are only a few such experimentally known materials. To help discover new 2D TMs, we develop a unified and computationally inexpensive approach to identify magnetic and non-magnetic 2D TMs, including gapped and semi-metallic topological classifications, in a high-throughput way using density functional theory-based spin-orbit spillage, Wannier-interpolation, and related techniques. We first compute the spin-orbit spillage for the ~1000 2D materials in the JARVIS-DFT dataset (https://www.ctcms.nist.gov/~knc6/JVASP.html ), resulting in 122 materials with high-spillage values. Then, we use Wannier-interpolation to carry-out Z2, Chern-number, anomalous Hall conductivity, Curie temperature, and edge state calculations to further support the predictions. We identify various topologically non-trivial classes such as quantum spin-hall insulators (QSHI), quantum anomalous-hall insulators (QAHI), and semimetals. For a few predicted materials, we run G0W0+SOC and DFT+U calculations. We find that as we introduce many-body effects, only a few materials retain non-trivial band-topology, suggesting the importance of high-level DFT methods in predicting 2D topological materials. However, as an initial step, the automated spillage screening and Wannier-approach provide useful predictions for finding new topological materials and to narrow down candidates for experimental synthesis and characterization.
By performing high-throughput calculations using density functional theory combined with a semiempirical van der Waals dispersion correction, we screen 97 direct- and 253 indirect-gap two dimensional nonmagnetic semiconductors from near 1000 monolayers according to the energetic, thermodynamic, mechanical and dynamic stability criterions. We present the calculated results including lattice constants, formation energy, Youngs modulus, Poissons ratio, shear modulus, band gap, band structure, ionization energy and electron affinity for all the candidates satisfying our criteria.
386 - Jun Zhou , Lei Shen , Ming Yang 2019
Despite their extraordinary properties, electrides are still a relatively unexplored class of materials with only a few compounds grown experimentally. Especially for layered electrides, the current researches mainly focus on several isostructures of Ca2N with similar interlayer two-dimensional (2D) anionic electrons. An extensive screening for different layered electrides is still missing. Here, by screening materials with anionic electrons for the structures in Materials Project, we uncover 12 existing materials as new layered electrides. Remarkably, these layered electrides demonstrate completely different properties from Ca2N. For example, unusual fully spin-polarized zero-dimensional (0D) anionic electrons are shown in metal halides with MoS2-like structures; unique one-dimensional (1D) anionic electrons are confined within the tubes of the quasi-1D structures; a coexistence of magnetic and non-magnetic anionic electrons is found in ZrCl-like structures and a new ternary Ba2LiN with both 0D and 1D anionic electrons. These materials not only significantly increase the pool of experimentally synthesizable layered electrides but also are promising to be exfoliated into advanced 2D materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا