Do you want to publish a course? Click here

Simple closed geodesics on regular tetrahedra in Lobachevsky space

83   0   0.0 ( 0 )
 Added by Darya Sukhorebska
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We obtained a complete classification of simple closed geodesics on regular tetrahedra in Lobachevsky space. Also, we evaluated the number of simple closed geodesics of length not greater than $L$ and found the asymptotic of this number as $L$ goes to infinity.



rate research

Read More

Our main point of focus is the set of closed geodesics on hyperbolic surfaces. For any fixed integer $k$, we are interested in the set of all closed geodesics with at least $k$ (but possibly more) self-intersections. Among these, we consider those of minimal length and investigate their self-intersection numbers. We prove that their intersection numbers are upper bounded by a universal linear function in $k$ (which holds for any hyperbolic surface). Moreover, in the presence of cusps, we get bounds which imply that the self-intersection numbers behave asymptotically like $k$ for growing $k$.
We compute the asymptotics, as R tends to infinity, of the number of closed geodesics in Moduli space of length at most R, or equivalently the number of pseudo-Anosov elements of the mapping class group of translation length at most R.
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be interested in the existence of geodesics which are closed up to the action of some element in the group $G$, since they project to closed magnetic geodesics on the quotient orbifold $Q/G$.
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
163 - Weisheng Wu 2021
In this article, we consider a closed rank one Riemannian manifold $M$ without focal points. Let $P(t)$ be the set of free-homotopy classes containing a closed geodesic on $M$ with length at most $t$, and $# P(t)$ its cardinality. We obtain the following Margulis-type asymptotic estimates: [lim_{tto infty}#P(t)/frac{e^{ht}}{ht}=1] where $h$ is the topological entropy of the geodesic flow. In the appendix, we also show that the unique measure of maximal entropy of the geodesic flow has the Bernoulli property.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا