No Arabic abstract
We present observations of a complete sub-sample of 20 radio galaxies from the Third Cambridge Catalog (3C) with redshift <0.3 obtained from VLT/MUSE optical integral field spectrograph. These data have been obtained as part of the survey MURALES (a MUse RAdio Loud Emission line Snapshot survey) with the main goal of exploring the Active Galactic Nuclei (AGN) feedback process in a sizeable sample of the most powerful radio sources at low redshift. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to their unprecedented depth (the median 3 sigma surface brightness limit in the emission line maps is 6X10^-18 erg s-1 cm-2 arcsec-2, these observations reveal emission line structures extending to several tens of kiloparsec in most objects. In nine sources the gas velocity shows ordered rotation, but in the other cases it is highly complex. 3C sources show a connection between radio morphology and emission line properties. Whereas, in three of the four Fanaroff and Riley Class I radio galaxies (FRIs), the line emission regions are compact, ~1 kpc in size; in all but one of the Class II radiogalaxies FRIIs, we detected large scale structures of ionized gas with a median extent of 17 kpc. Among the FRIIs, those of high and low excitation show extended gas structures with similar morphological properties, suggesting that they both inhabit regions characterized by a rich gaseous environment on kpc scale.
We present the final observations of a complete sample of 37 radio galaxies from the Third Cambridge Catalog (3C) with redshift <0.3 and declination <20 degrees obtained with the VLT/MUSE optical integral field spectrograph. These data were obtained as part of the MURALES survey (a MUse RAdio Loud Emission line Snapshot survey) with the main goal of exploring the AGN feedback process in the most powerful radio sources. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to such an unprecedented depth these observations reveal emission line regions (ELRs) extending several tens of kiloparsec in most objects. The gas velocity shows ordered rotation in 25 galaxies, but in several sources it is highly complex. We find that the 3C sources show a connection between radio morphology and emission line properties. In the ten FRI sources the line emission region is generally compact, only a few kpc in size, and only in one case it exceeds the size of the host. Conversely, all but two of the FRII galaxies show large-scale structures of ionized gas. The median extent is 16 kpc with the maximum reaching a size of ~80 kpc. There are no apparent differences in extent or strength between the ELR properties of the FRII sources of high and low gas excitation. We confirm that the previous optical identification of 3C258 is incorrect: this radio source is likely associated with a QSO at z~ 1.54.
We analyze VLT/MUSE observations of 37 radio galaxies from the Third Cambridge catalogue (3C) with redshift $<$0.3 searching for nuclear outflows of ionized gas. These observations are part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey), whose main goal is to explore the feedback process in the most powerful radio-loud AGN. We applied a nonparametric analysis to the [O~III] $lambda$5007 emission line, whose asymmetries and high-velocity wings reveal signatures of outflows. We find evidence of nuclear outflows in 21 sources, with velocities between $sim$400 - 1000 km s$^{-1}$, outflowing masses of $sim 10^5-10^7$ M$_odot$, and a kinetic energy in the range $sim 10^{53} - 10^{56}$ erg. In addition, evidence for extended outflows is found in the 2D gas velocity maps of 13 sources of the subclasses of high-excitation (HEG) and broad-line (BLO) radio galaxies, with sizes between 0.4 and 20 kpc. We estimate a mass outflow rate in the range 0.4 - 30 M$_odot$ yr$^{-1}$ and an energy deposition rate of ${dot E}_{kin} sim 10^{42}-10^{45} $ erg s$^{-1}$. Comparing the jet power, the nuclear luminosity of the active galactic nucleus, and the outflow kinetic energy rate, we find that outflows of HEGs and BLOs are likely radiatively powered, while jets likely only play a dominant role in galaxies with low excitation. The low loading factors we measured suggest that these outflows are driven by momentum and not by energy. Based on the gas masses, velocities, and energetics involved, we conclude that the observed ionized outflows have a limited effect on the gas content or the star formation in the host. In order to obtain a complete view of the feedback process, observations exploring the complex multiphase structure of outflows are required.
We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z<0.3 for 8 ksec each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during the Chandra Cycle 9, while here, we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hotspots and jet features with associated X-ray emission. X-ray fluxes in three energy bands: soft, medium and hard for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis which provides the best fit values of X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pileup has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Amongst the current sample, there are two compact steep spectrum radio sources; two broad line radio galaxies; and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hotspots have been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe and as well as that cospatial with radio jets in 3C 29 and 3C 402.
We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.
We present a homogeneous and 92 % complete dataset of optical nuclear spectra for the 113 3CR radio sources with redshifts < 0.3, obtained with the Telescopio Nazionale Galileo. For these sources we could obtain uniform and uninterrupted coverage of the key spectroscopic optical diagnostics. The observed sample, including powerful classical FR II radio-galaxies and FR I, together spanning four orders of magnitude in radio-luminosity, provides a broad representation of the spectroscopic properties of radio galaxies. In this first paper we present an atlas of the spectra obtained, provide measurements of the diagnostic emission line ratios, and identify active nuclei with broad line emission. These data will be used in follow-up papers to address the connection between the optical spectral characteristics and the multiwavelength properties of the sample.