Do you want to publish a course? Click here

State transfer in an inhomogeneous spin chain

75   0   0.0 ( 0 )
 Added by Rafael Barfknecht
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analytical study of state transfer in a spin chain in the presence of an inhomogeneous set of exchange coefficients. We initially consider the homogeneous case and describe a method to obtain the energy spectrum of the system. Under certain conditions, the state transfer time can be predicted by taking into account the energy gap between the two lowest energy eigenstates. We then generalize our approach to the inhomogeneous case and show that including a barrier in the chain can lead to a reduction of the state transfer time. We additionally extend our analysis to the case of multiple barriers. These advances may contribute to the understanding of spin transfer dynamics in long chains where connections between neighboring spins can be manipulated.



rate research

Read More

We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scales as the inverse third power of the lattice spacing, $C_3/R^3$. The experimental data demonstrate the importance of next neighbor interactions which are manifest as revivals in the excitation dynamics. The results suggest that arrays of Rydberg atoms are ideally suited to large scale, high-fidelity quantum simulation of spin dynamics.
We demonstrate that perfect state transfer can be achieved using an engineered spin chain and clean local end-chain operations, without requiring the initialization of the state of the medium nor fine tuning of control-pulses. This considerably relaxes the prerequisites for obtaining reliable transfer of quantum information across interacting-spin systems. Moreover, it allows us to shed light on the interplay among purity, entanglement and operations on a class of many-body systems potentially useful for quantum information processing tasks.
Transferring quantum information between two qubits is a basic requirement for many applications in quantum communication and quantum information processing. In the iterative quantum state transfer (IQST) proposed by D. Burgarth et al. [Phys. Rev. A 75, 062327 (2007)], this is achieved by a static spin chain and a sequence of gate operations applied only to the receiving end of the chain. The only requirement on the spin chain is that it transfers a finite part of the input amplitude to the end of the chain, where the gate operations accumulate the information. For an appropriate sequence of evolutions and gate operations, the fidelity of the transfer can asymptotically approach unity. We demonstrate the principle of operation of this transfer scheme by implementing it in a nuclear magnetic resonance quantum information processor.
We investigate the quantum state transfer in a chain of particles satisfying q-deformed oscillators algebra. This general algebraic setting includes the spin chain and the bosonic chain as limiting cases. We study conditions for perfect state transfer depending on the number of sites and excitations on the chain. They are formulated by means of irreducible representations of a quantum algebra realized through Jordan-Schwinger maps. Playing with deformation parameters, we can study the effects of nonlinear perturbations or interpolate between the spin and bosonic chain.
The interaction between an atomic ensemble and a light mode in a high-finesse optical cavity can easily reach the strong-coupling regime, where quantum effects dominate. In this regime, the interaction can be used to generate both atom-light and atom-atom entanglement. We analyze the dominant effects on the collective atomic state and the light field, and derive a unified approach that can account for atomic entanglement induced both by measurements on the light field, and by ignoring the state of the light field altogether. We present analytical expressions for the entanglement induced by the interaction, and determine the conditions that maximize the entanglement-induced gain over the standard quantum limit in quantum sensors and atomic clocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا