Do you want to publish a course? Click here

Expanding the Sample: The Relationship Between the Black Hole Mass of BCGs and the Total Mass of Galaxy Clusters

65   0   0.0 ( 0 )
 Added by Frederika Phipps
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supermassive Black Holes (BHs) residing in brightest cluster galaxies (BCGs) are overly massive when considering the local relationships between the BH mass and stellar bulge mass or velocity dispersion. Due to the location of these BHs within the cluster, large-scale cluster processes may aid the growth of BHs in BCGs. In this work, we study a sample of 71 galaxy clusters to explore the relationship between the BH mass, stellar bulge mass of the BCG, and the total gravitating mass of the host clusters. Due to difficulties in obtaining dynamically measured BH masses in distant galaxies, we use the Fundamental Plane relationship of BHs to infer their masses. We utilize X-ray observations taken by $Chandra$ to measure the temperature of the intra-cluster medium (ICM), which is a proxy for the total mass of the cluster. We analyze the $rm M_{BH}-kT$ and $rm M_{BH}-M_{Bulge}$ relationships and establish the best-fitting power laws:$log_{10}(M_{rm BH} /10^9 M_{odot})=-0.35+2.08 log_{10}(kT / 1 rm keV)$ and $log_{10}(rm M_{BH}/10^9M_{odot})= -1.09+ 1.92 log_{10}(M_{rm bulge}/10^{11}M_{odot})$. Both relations are comparable with that established earlier for a sample of brightest group/cluster galaxies with dynamically measured BH masses. Although both the $rm M_{BH}-kT$ and the $rm M_{BH}-M_{Bulge}$ relationships exhibit large intrinsic scatter, based on Monte Carlo simulations we conclude that dominant fraction of the scatter originates from the Fundamental Plane relationship. We split the sample into cool core and non-cool core resembling clusters, but do not find statistically significant differences in the $rm M_{BH}-kT$ relation. We speculate that the overly massive BHs in BCGs may be due to frequent mergers and cool gas inflows onto the cluster center.



rate research

Read More

Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy clusters potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the $M_{rm 500}$ mass of the galaxy groups/clusters. We find that the $M_{rm BH} - kT$ relation is significantly tighter and exhibits smaller scatter than the $M_{rm BH} - M_{rm bulge}$ relations. The best-fitting power-law relations are $ log_{10} (M_{rm BH}/10^{9} rm{M_{odot}}) = 0.20 + 1.74 log_{10} (kT/1 rm{keV}) $ and $ log_{10} (M_{rm BH}/10^{9} rm{M_{odot}}) = -0.80 + 1.72 log_{10} (M_{rm bulge}/10^{11} M_{odot})$. Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.
At the highest redshifts, z>6, several tens of luminous quasars have been detected. The search for fainter AGN, in deep X-ray surveys, has proven less successful, with few candidates to date. An extrapolation of the relationship between black hole (BH) and bulge mass would predict that the sample of z>6 galaxies host relatively massive BHs (>1e6 Msun), if one assumes that total stellar mass is a good proxy for bulge mass. At least a few of these BHs should be luminous enough to be detectable in the 4Ms CDFS. The relation between BH and stellar mass defined by local moderate-luminosity AGN in low-mass galaxies, however, has a normalization that is lower by approximately an order of magnitude compared to the BH-bulge mass relation. We explore how this scaling changes the interpretation of AGN in the high-z Universe. Despite large uncertainties, driven by those in the stellar mass function, and in the extrapolation of local relations, one can explain the current non-detection of moderate-luminosity AGN in Lyman Break Galaxies if galaxies below 1e11 Msun are characterized by the low-normalization scaling, and, even more so, if their Eddington ratio is also typical of moderate-luminosity AGN rather than luminous quasars. AGN being missed by X-ray searches due to obscuration or instrinsic X-ray weakness also remain a possibility.
Context. This is the third study of a series dedicated to the observed parallelism of properties between Galaxy Clusters and Groups(GCGs) and early-type galaxies (ETGs). Aims. Here we investigate the physical origin of the Mass-Radius Relation (MRR). Methods. Having collected literature data on masses and radii for objects going from Globular Clusters (GCs) to ETGs and GCGs, we set up the MR-plane and compare the observed distribution with the MRR predicted by theoretical models both for the monolithic and hierarchical scenarios. Results. We argue that the distributions of stellar systems in the MR-plane is due to complementary mechanisms: (i) on one hand, as shown in paper II, the relation of the virial equilibrium does intersect with a relation that provides the total luminosity as a function of the star formation history; (ii) on the other hand, the locus predicted for the collapse of systems should be convolved with the statistical expectation for the maximum mass of the halos at each comsic epoch. This second aspect provides a natural boundary limit explaining either the curved distribution observed in the MR-plane and the existence of a zone of avoidance. Conclusions. The distribution of stellar systems in the MR-plane is the result of two combined evolution, that of the stellar component and that of the halo component.
We investigate the cosmic evolution of the ratio between black hole mass (MBH) and host galaxy total stellar mass (Mstellar) out to z~2.5 for a sample of 100 X-ray-selected moderate-luminosity, broad-line active galactic nuclei (AGNs) in the Chandra-COSMOS Legacy Survey. By taking advantage of the deep multi-wavelength photometry and spectroscopy in the COSMOS field, we measure in a uniform way the galaxy total stellar mass using a SED decomposition technique and the black hole mass based on broad emission line measurements and single-epoch virial estimates. Our sample of AGN host galaxies has total stellar masses of 10^10-12Msun, and black hole masses of 10^7.0-9.5Msun. Combining our sample with the relatively bright AGN samples from the literature, we find no significant evolution of the MBH-Mstellar relation with black hole-to-host total stellar mass ratio of MBH/Mstellar~0.3% at all redshifts probed. We conclude that the average black hole-to-host stellar mass ratio appears to be consistent with the local value within the uncertainties, suggesting a lack of evolution of the MBH-Mstellar relation up to z~2.5.
We investigate the relationship between the mass of the central supermassive black hole, M_bh, and the host galaxy luminosity, L_gal, in a sample of quasars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H + K features in the composite spectra. We evaluate the evolution in the M_bh - L_gal relationship by examining the redshift dependence of Delta log M_bh, the offset in black hole mass from the local black hole - bulge relationship. There is little systematic trend in Delta log M_bh out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, sigma_*, we find agreement of our derived host luminosities with the locally-observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for sigma_* in statistical studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا