No Arabic abstract
End-to-end dialogue generation has achieved promising results without using handcrafted features and attributes specific for each task and corpus. However, one of the fatal drawbacks in such approaches is that they are unable to generate informative utterances, so it limits their usage from some real-world conversational applications. This paper attempts at generating diverse and informative responses with a variational generation model, which contains a joint attention mechanism conditioning on the information from both dialogue contexts and extra knowledge.
To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmenting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks on the inference efficiency. This paper proposes KnowExpert, an end-to-end framework to bypass the explicit retrieval process and inject knowledge into the pre-trained language models with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that KknowExpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the potential of our proposed direction.
Current end-to-end neural conversation models inherently lack the flexibility to impose semantic control in the response generation process, often resulting in uninteresting responses. Attempts to boost informativeness alone come at the expense of factual accuracy, as attested by pretrained language models propensity to hallucinate facts. While this may be mitigated by access to background knowledge, there is scant guarantee of relevance and informativeness in generated responses. We propose a framework that we call controllable grounded response generation (CGRG), in which lexical control phrases are either provided by a user or automatically extracted by a control phrase predictor from dialogue context and grounding knowledge. Quantitative and qualitative results show that, using this framework, a transformer based model with a novel inductive attention mechanism, trained on a conversation-like Reddit dataset, outperforms strong generation baselines.
Embedding entities and relations of a knowledge graph in a low-dimensional space has shown impressive performance in predicting missing links between entities. Although progresses have been achieved, existing methods are heuristically motivated and theoretical understanding of such embeddings is comparatively underdeveloped. This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs) to derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail). Moreover, we show that marginal loss minimisation, a popular objective used in much prior work in KGE, follows naturally from the log-likelihood ratio maximisation under the probabilities estimated from the KGEs according to our theoretical relationship. We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph. Using the derived objective, accurate KGEs are learnt from FB15K237 and WN18RR benchmark datasets, providing empirical evidence in support of the theory.
Knowledge-grounded dialogue is a task of generating a fluent and informative response based on both conversation context and a collection of external knowledge, in which knowledge selection plays an important role and attracts more and more research interest. However, most existing models either select only one knowledge or use all knowledge for responses generation. The former may lose valuable information in discarded knowledge, while the latter may bring a lot of noise. At the same time, many approaches need to train the knowledge selector with knowledge labels that indicate ground-truth knowledge, but these labels are difficult to obtain and require a large number of manual annotations. Motivated by these issues, we propose Knoformer, a dialogue response generation model based on reinforcement learning, which can automatically select one or more related knowledge from the knowledge pool and does not need knowledge labels during training. Knoformer is evaluated on two knowledge-guided conversation datasets, and achieves state-of-the-art performance.
Data-to-text generation has recently attracted substantial interests due to its wide applications. Existing methods have shown impressive performance on an array of tasks. However, they rely on a significant amount of labeled data for each task, which is costly to acquire and thus limits their application to new tasks and domains. In this paper, we propose to leverage pre-training and transfer learning to address this issue. We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text. 2) a pre-training paradigm on a massive knowledge-grounded text corpus crawled from the web. The pre-trained model can be fine-tuned on various data-to-text generation tasks to generate task-specific text. We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness. Under the fully-supervised setting, our model can achieve remarkable gains over the known baselines. Under zero-shot setting, our model without seeing any examples achieves over 30 ROUGE-L on WebNLG while all other baselines fail. Under the few-shot setting, our model only needs about one-fifteenth as many labeled examples to achieve the same level of performance as baseline models. These experiments consistently prove the strong generalization ability of our proposed framework https://github.com/wenhuchen/KGPT.