Do you want to publish a course? Click here

The star cluster survivability after gas expulsion is independent of the impact of the Galactic tidal field

91   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the impact of the tidal field on the survivability of star clusters following instantaneous gas expulsion. Our model clusters are formed with a centrally-peaked star-formation efficiency profile as a result of star-formation taking place with a constant efficiency per free-fall time. We define the impact of the tidal field as the ratio of the cluster half-mass radius to its Jacobi radius immediately after gas expulsion, $lambda = r_{h}/R_{J}$. We vary $lambda$ by varying either the Galactocentric distance, or the size (hence volume density) of star clusters. We propose a new method to measure the violent relaxation duration, in which we compare the total mass-loss rate of star clusters with their stellar evolutionary mass-loss rate. That way, we can robustly estimate the bound mass fraction of our model clusters at the end of violent relaxation. The duration of violent relaxation correlates linearly with the Jacobi radius, when considering identical clusters at different Galactocentric distances. In contrast, it is nearly constant for the solar neighbourhood clusters, slightly decreasing with $lambda$. The violent relaxation does not last longer than 50 Myr in our simulations. Identical model clusters placed at different Galactocentric distances have the same final bound fraction, despite experiencing different impacts of the tidal field. The solar neighbourhood clusters with different densities experience only limited variations of their final bound fraction. In general, we conclude that the cluster survivability after instantaneous gas expulsion, as measured by their bound mass fraction at the end of violent relaxation, $F_{bound}$, is independent of the impact of the tidal field, $lambda$.



rate research

Read More

98 - Xiaoying Pang 2020
We identify structures of the young star cluster NGC 2232 in the solar neighborhood (323.0 pc), and a newly discovered star cluster LP 2439 (289.1 pc). Member candidates are identified using the Gaia DR2 sky position, parallax and proper motion data, by an unsupervised machine learning method, textsc{StarGO}. Member contamination from the Galactic disk is further removed using the color magnitude diagram. The four identified groups (NGC 2232, LP 2439 and two filamentary structures) of stars are coeval with an age of 25 Myr and were likely formed in the same giant molecular cloud. We correct the distance asymmetry from the parallax error with a Bayesian method. The 3D morphology shows the two spherical distributions of clusters NGC 2232 and LP 2439. Two filamentary structures are spatially and kinematically connected to NGC 2232. Both NGC 2232 and LP 2439 are expanding. The expansion is more significant in LP 2439, generating a loose spatial distribution with shallow volume number and mass density profiles. The expansion is suggested to be mainly driven by gas expulsion. NGC 2232, with 73~percent of the cluster mass bound, is currently experiencing a process of re-virialization, However, LP 2439, with 52 percent cluster mass being unbound, may fully dissolve in the near future. The different survivability traces different dynamical states of NGC 2232 and LP 2439 prior to the onset of gas expulsion. NGC 2232 may have been substructured and subvirial, while LP 2439 may either have been virial/supervirial, or it has experienced a much faster rate of gas removal.
The evolution of globular clusters due to 2-body relaxation results in an outward flow of energy and at some stage all clusters need a central energy source to sustain their evolution. Henon provided the insight that we do not need to know the details of the energy production in order to understand the relaxation-driven evolution of the cluster, at least outside the core. He provided two self-similar solutions for the evolution of clusters based on the view that the cluster as a whole determines the amount of energy that is produced in the core: steady expansion for isolated clusters, and homologous contraction for clusters evaporating in a tidal field. We combine these models: the half-mass radius increases during the first half of the evolution, and decreases in the second half; while the escape rate approaches a constant value set by the tidal field. We refer to these phases as `expansion dominated and `evaporation dominated. These simple analytical solutions immediately allow us to construct evolutionary tracks and isochrones in terms of cluster half-mass density, cluster mass and galacto-centric radius. From a comparison to the Milky Way globular clusters we find that roughly 1/3 of them are in the second, evaporation-dominated phase and for these clusters the density inside the half-mass radius varies with the galactocentric distance R as rho_h ~ 1/R^2. The remaining 2/3 are still in the first, expansion-dominated phase and their isochrones follow the environment-independent scaling rho_h ~ M^2; that is, a constant relaxation time-scale. We find substantial agreement between Milky Way globular cluster parameters and the isochrones, which suggests that there is, as Henon suggested, a balance between the flow of energy and the central energy production for almost all globular clusters.
100 - E. Sabbi , A. Nota , M. Tosi 2011
We use deep images acquired with the Advanced Camera for Surveys (ACS) on board of the Hubble Space Telescope (HST) in the filters F555W and F814W to characterize the properties of NGC 376, a young star cluster located in the wing of the Small Magellanic Cloud (SMC). Using isochrone fitting we derive for NGC 376 an age of 28+/-7 Myr, in good agreement with previous studies. The high spatial resolution ACS data allow us to determine the center of gravity of the cluster and to construct extended surface brightness and radial density profiles. Neither of these profiles can be fitted with a theoretical model, suggesting that the cluster is not in virial equilibrium. Considering the young age of the cluster, we speculate that the distortion of the radial profiles may be the result of the rapid gas dispersal that follows the initial phase of star formation. The cluster shows clear evidence of dynamical mass segregation. From the properties of the radial profiles and the present day mass function (PDMF) we conclude that NGC 376 appears to have already lost nearly 90% of its initial stellar mass, probably as a consequence of the sudden gas dispersal that follows the early phase of star formation (SF).
Direct N-body calculations are presented of the early evolution of exposed clusters to quantify the influence of gas expulsion on the time-varying surface brightness. By assuming that the embedded OB stars drive out most of the gas after a given time delay, the change of the surface brightness of expanding star clusters is studied. The influence of stellar dynamics and stellar evolution is discussed. The growth of the core radii of such models shows a remarkable core re-virialisation. The decrease of the surface mass density during gas expulsion is large and is only truncated by this re-virialisation process. However, the surface brightness within a certain radius does not increase noticeably. Thus, an embedded star cluster cannot reappear in observational surveys after re-virialisation. This finding has a bearing on the observed infant mortality fraction.
We study the evolution of star clusters in the Galactic tidal field starting from their birth in molecular clumps. Our model clusters form according to the local-density-driven cluster formation model in which the stellar density profile is steeper than that of gas. As a result, clusters resist the gas expulsion better than predicted by earlier models. We vary the impact of the Galactic tidal field {lambda}, considering different Galactocentric distances (3-18 kpc), as well as different cluster sizes. Our model clusters survive the gas expulsion independent of {lambda}. We investigated the relation between the cluster mass at the onset of secular evolution and their dissolution time. The model clusters formed with a high star-formation efficiency (SFE) follow a tight mass-dependent dissolution relation, in agreement with previous theoretical studies. However, the low-SFE models present a shallower mass-dependent relation than high-SFE clusters, and most dissolve before reaching 1 Gyr (cluster teenage mortality).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا