Do you want to publish a course? Click here

Determining the efficiency of converting magnetar spin-down energy into gamma-ray burst X-ray afterglow emission and its possible implications

71   0   0.0 ( 0 )
 Added by Di Xiao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plateaus are common in X-ray afterglows of gamma-ray bursts. Among a few scenarios for the origin of them, the leading one is that there exists a magnetar inside and persistently injects its spin-down energy into an afterglow. In previous studies, the radiation efficiency of this process is assumed to be a constant $gtrsim0.1$, which is quite simple and strong. In this work we obtain the efficiency from a physical point of view and find that this efficiency strongly depends on the injected luminosity. One implication of this result is that those X-ray afterglow light curves which show steeper temporal decay than $t^{-2}$ after the plateau phase can be naturally understood now. Also, the braking indexes deduced from afterglow fitting are found to be larger than those in previous studies, which are more reasonable for newborn magnetars.



rate research

Read More

164 - Jie-Ying Liu , Jirong Mao 2020
The detection of the gamma-ray burst (GRB) X-ray emission line is important for studying the GRB physics and constraining the GRB redshift. Since the line-like feature in the GRB X-ray spectrum was first reported in 1999, several works on line searching have been published over the past two decades. Even though some observations on the X-ray line-like feature were performed, the significance remains controversial to date. In this paper, we utilize the down-Comptonization mechanism and present the time evolution of the Fe K$alpha$ line emitted near the GRB central engine. The line intensity decreases with the evolution time, and the time evolution depends on the the electron density and the electron temperature. In addition, the initial line with a larger broadening decreases less over time. For instance, when the emission line penetrates material with the an electron density above $10^{12}$ cm$^{-3}$ at 1 keV, it generally becomes insignificant enough after 100 s for it not to be detected. The line-like profile deviates from the Gaussian form, and it finally changes to be similar to a blackbody shape at the time of the thermal equilibrium between the line photons and the surrounding material.
The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; $E_gamma > $100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before reaching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For 5 bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of $la$10 hours.
Since its launch in 2004, the Swift satellite has monitored the X-ray afterglows of several hundred Gamma-Ray Bursts, and revealed that their X-ray light-curves are more complex than previously thought, exhibiting up to three power-law segments. Energy injection into the relativistic blast-wave energizing the burst ambient medium has been proposed most often to be the reason for the X-ray afterglow complexity. We examine 117 light-curve breaks of 98 Swift X-ray afterglows, selected for their high-quality monitoring and well-constrained flux decay rates. Thirty percent of afterglows have a break that can be an adiabatic jet-break, in the sense that there is one variant of the forward-shock emission from a collimated outflow model that can account for both the pre- and post-break flux power-law decay indices, given the measured X-ray spectral slope. If allowance is made for a steady energy injection into the forward-shock, then another 56 percent of X-ray afterglows have a light-curve break that can be explained with a jet-break. The remaining 12 percent that are not jet-breaks, as well as the existence of two breaks in 19 afterglows (out of which only one can be a jet-break), suggest that some X-ray breaks arise from a sudden change in the rate at which energy is added to the blast-wave, and it may well be that a larger fraction of X-ray light-curve breaks are generated by that mechanism. To test the above two mechanisms for afterglow light-curve breaks, we derive comprehensive analytical results for the dynamics of outflows undergoing energy injection and for their light-curves, including closure relations for inverse-Compton afterglows and for the emission from spreading jets interacting with an wind-like ambient medium.
In order to constrain the broad-band spectral energy distribution of the afterglow of GRB 100621A, dedicated observations were performed in the optical/near-infrared with the 7-channel Gamma-Ray Burst Optical and Near-infrared Detector (GROND) at the 2.2m MPG/ESO telescope, in the sub-millimeter band with the large bolometer array LABOCA at APEX, and at radio frequencies with ATCA. Utilizing also Swift X-ray observations, we attempt an interpretation of the observational data within the fireball scenario. The afterglow of GRB 100621A shows a very complex temporal as well as spectral evolution. We identify three different emission components, the most spectacular one causing a sudden intensity jump about one hour after the prompt emission. The spectrum of this component is much steeper than the canonical afterglow. We interpret this component using the prescription of Vlasis et al. (2011) for a two-shell collision after the first shell has been decelerated by the circumburst medium. We use the fireball scenario to derive constraints on the microphysical parameters of the first shell. Long-term energy injection into a narrow jet seems to provide an adequate description. Another noteworthy result is the large ($A_V$ = 3.6 mag) line-of-sight host extinction of the afterglow in an otherwise extremely blue host galaxy.
Gamma-ray bursts (GRBs) are brief flashes of gamma rays, considered to be the most energetic explosive phenomena in the Universe. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow -- produced by the interaction between the ejected matter and the circumburst medium -- slows down, and a gradual decrease in brightness is observed. GRBs typically emit most of their energy via gamma-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elussive. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow -ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا