No Arabic abstract
This Astro-2020 White Paper deals with what we might learn from future gravitational wave observations about the early universe phase transitions and their energy scales, primordial black holes, Hubble parameter, dark matter and dark energy, modified theories of gravity and extra dimensions.
By making use of a class of steep exponential type of potentials, which has been recently used to describe quintessential inflation, we show how a unified picture for both inflation, dark energy and dark matter can emerge entirely through dissipative effects. Dissipation provides a way for extending the applicability of a larger class of these potentials in the sense of leading to a consistent early Universe inflationary picture and producing observables in agreement with the Planck legacy data. Likewise, dissipative effects lead to dark matter production with consistent abundances and, towards the recent time of the Universe, drives the potential energy of the scalar quintessential field to dominate again, essentially mimicking a cosmological constant by today, with all cosmological parameters consistent with the observations. Both early and late Universes are connected and with no kination period in between.
The standard cosmological model successfully describes many observations from widely different epochs of the Universe, from primordial nucleosynthesis to the accelerating expansion of the present day. However, as the basic cosmological parameters of the model are being determined with increasing and unprecedented precision, it is not guaranteed that the same model will fit more precise observations from widely different cosmic epochs. Discrepancies developing between observations at early and late cosmological time may require an expansion of the standard model, and may lead to the discovery of new physics. The workshop Tensions between the Early and the Late Universe was held at the Kavli Institute for Theoretical Physics on July 15-17 2019 (More details of the workshop (including on-line presentations) are given at the website: https://www.kitp.ucsb.edu/activities/enervac-c19) to evaluate increasing evidence for these discrepancies, primarily in the value of the Hubble constant as well as ideas recently proposed to explain this tension. Multiple new observational results for the Hubble constant were presented in the time frame of the workshop using different probes: Cepheids, strong lensing time delays, tip of the red giant branch (TRGB), megamasers, Oxygen-rich Miras and surface brightness fluctuations (SBF) resulting in a set of six new ones in the last several months. Here we present the summary plot of the meeting that shows combining any three independent approaches to measure H$_0$ in the late universe yields tension with the early Universe values between 4.0$sigma$ and 5.8$sigma$. This shows that the discrepancy does not appear to be dependent on the use of any one method, team, or source. Theoretical ideas to explain the discrepancy focused on new physics in the decade of expansion preceding recombination as the most plausible. This is a brief summary of the workshop.
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
We discuss how one can reconstruct the thermal history of the Universe by combining cosmic microwave background (CMB) measurements and gravitational wave (GW) direct detection experiments. Assuming various expansion eras to take place after the inflationary reheating and before Big-Bang Nucleosynthesis (BBN), we show how measurements of the GW spectrum can be used to break the degeneracies associated with CMB data, the latter being sensitive to the total amount of cosmic expansion only. In this context, we argue that the expected constraints from future CMB and GW experiments can probe a scenario in which there exists late-time entropy production in addition to the standard reheating. We show that, for some cases, combining data from future CMB and GW direct detection experiments allows the determination of the reheating temperature, the amount of entropy produced and the temperature at which the standard radiation era started.
We study the tensor modes of linear metric perturbations within an effective framework of loop quantum cosmology. After a review of inverse-volume and holonomy corrections in the background equations of motion, we solve the linearized tensor modes equations and extract their spectrum. Ignoring holonomy corrections, the tensor spectrum is blue tilted in the near-Planckian superinflationary regime and may be observationally disfavoured. However, in this case background dynamics is highly nonperturbative, hence the use of standard perturbative techniques may not be very reliable. On the other hand, in the quasi-classical regime the tensor index receives a small negative quantum correction, slightly enhancing the standard red tilt in slow-roll inflation. We discuss possible interpretations of this correction, which depends on the choice of semiclassical state.