No Arabic abstract
A measurement of the ratio of branching fractions of the decays $B^+to K^+mu^+mu^-$ and $B^+to K^+e^+e^-$ is presented. The proton-proton collision data used correspond to an integrated luminosity of $5.0,$fb$^{-1}$ recorded with the LHCb experiment at centre-of-mass energies of $7$, $8$ and $13,$TeV. For the dilepton mass-squared range $1.1 < q^2 < 6.0,$GeV$^2!/c^4$ the ratio of branching fractions is measured to be $R_K = {0.846,^{+,0.060}_{-,0.054},^{+,0.016}_{-,0.014}}$, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of $R_K$ to date and is compatible with the Standard Model at the level of 2.5 standard deviations.
Rare semileptonic $b to s ell^+ ell^-$ transitions provide some of the most promising frameworks to search for new physics effects. Recent analyses of these decays have indicated an anomalous behaviour in measurements of angular distributions of the decay $B^0to K^*mu^+mu^-$ and lepton-flavour-universality observables. Unambiguously establishing if these deviations have a common nature is of paramount importance in order to understand the observed pattern. We propose a novel approach to independently and complementary probe this hypothesis by performing a simultaneous amplitude analysis of $bar{B}^0 to bar{K}^{*0} mu^+mu^-$ and $bar{B}^0 to bar{K}^{*0} e^+e^-$ decays. This method enables the direct determination of observables that encode potential non-equal couplings of muons and electrons, and are found to be insensitive to nonperturbative QCD effects. If current hints of new physics are confirmed, our approach could allow an early discovery of physics beyond the standard model with LHCb run II data sets.
The ratio of branching fractions of the decays $Lambda^{0}_{b}to pK^{-}e^{+}e^{-}$ and $Lambda^{0}_{b}to pK^{-}mu^{+}mu^{-}$, $R^{-1}_{pK}$, is measured for the first time using proton-proton collision data corresponding to an integrated luminosity of 4.7 $fb^{-1}$ recorded with the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV. In the dilepton mass-squared range $0.1 < q^{2} < 6.0$ $GeV^{2}/c^{4}$ and the $pK^{-}$ mass range $m(pK^{-}) < 2600$ $MeV/c^{2}$, the ratio of branching fractions is measured to be $R^{-1}_{pK} = 1.17 ^{+0.18}_{-0.16} pm 0.07$, where the first uncertainty is statistical and the second systematic. This is the first test of lepton universality with b baryons and the first observation of the decay $Lambda^{0}_{b}to pK^{-}e^{+}e^{-}$.
A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} rightarrow K^{*0}mu^{+}mu^{-}$ and $B^{0} rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}pi^{-}$, which is required to have an invariant mass within 100$mathrm{,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$mathrm{,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$mathrm{,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be begin{eqnarray*} R_{K^{*0}} = begin{cases} 0.66~^{+~0.11}_{-~0.07}mathrm{,(stat)} pm 0.03mathrm{,(syst)} & textrm{for } 0.045 < q^{2} < 1.1~mathrm{,GeV^2}c^4 , , 0.69~^{+~0.11}_{-~0.07}mathrm{,(stat)} pm 0.05mathrm{,(syst)} & textrm{for } 1.1phantom{00} < q^{2} < 6.0~mathrm{,GeV^2}c^4 , . end{cases} end{eqnarray*} The corresponding 95.4% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.
Recent results obtained in experiments at the LHC in the field of rare $b$-hadron decays are reviewed in this contribution, with a focus on $bto qellell$ processes. A general status is presented as well as recently completed measurements.
We present measurements of the branching fractions for the decays $Bto K mu^{+}mu^{-}$ and $Bto K e^{+}e^{-}$, and their ratio ($R_{K}$), using a data sample of 711 $fb^{-1}$ that contains $772 times 10^{6}$ $Bbar{B}$ events. The data were collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. The ratio $R_{K}$ is measured in five bins of dilepton invariant-mass-squared ($q^{2}$): $q^{2} in (0.1, 4.0), (4.0, 8.12), (1.0, 6.0)$, $(10.2, 12.8)$ and ($>14.18) GeV^{2}/c^{4}$, along with the whole $q^2$ region. The $R_{K}$ value for $q^{2} in (1.0, 6.0) GeV^{2}/c^{4}$ is $1.03^{+0.28}_{-0.24} pm 0.01$. The first and second uncertainties listed are statistical and systematic, respectively. All results for $R_{K}$ are consistent with Standard Model predictions. We also measure $C!P$-averaged isospin asymmetries in the same $q^{2}$ bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the $q^{2}in(1.0,6.0) GeV^{2}/c^{4}$ bin in the mode with muon final states. The measured differential branching fractions, ${dcal B}/{dq^{2}}$, are consistent with theoretical predictions for charged $B$ decays, while the corresponding values are below the expectations for neutral $B$ decays. We have also searched for lepton-flavor-violating $B rightarrow Kmu^{pm}e^{mp}$ decays and set $90%$ confidence-level upper limits on the branching fraction in the range of $10^{-8}$ for $B^{+} rightarrow K^{+}mu^{pm}e^{mp}$, and $B^{0} rightarrow K^{0}mu^{pm}e^{mp}$ modes.