The Noncommutative Values of Quantum Observables


Abstract in English

We discuss the notion about physical quantities as having values represented by real numbers, and its limiting to describe nature to be understood in relation to our appreciation that the quantum theory is a better theory of natural phenomena than its classical analog. Getting from the algebra of physical observables to their values on a fixed state is, at least for classical physics, really a homomorphic map from the algebra into the real number algebra. The limitation of the latter to represent the values of quantum observables with noncommutating algebraic relation is obvious. We introduce and discuss the idea of the noncommutative values of quantum observables and its feasibility, arguing that at least in terms of the representation of such a value as an infinite set of complex number, the idea makes reasonable sense theoretically as well as practically.

Download