In this work we study line arrangements consisting in lines passing through three non aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement, which is a particular class of triangular arrangements. Among these Roots-of Unity-Arrangements we characterize the free ones and show that Teraos conjecture holds for this family. Finally, we give two triangular arrangements having the same weak combinatorics, such that one is free but the other one is not.