Do you want to publish a course? Click here

Evidence for a Young Stellar Population in Nearby Type 1 Active Galaxies

62   0   0.0 ( 0 )
 Added by Minjin Kim
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

To understand the physical origin of the close connection between supermassive black holes and their host galaxies, it is vital to investigate star formation properties in active galaxies. Using a large dataset of nearby type 1 active galactic nuclei (AGNs) with detailed structural decomposition based on high-resolution optical images obtained with the Hubble Space Telescope, we study the correlation between black hole mass and bulge luminosity and the (Kormendy) relation between bulge effective radius and surface brightness. In both relations, the bulges of type 1 AGNs tend to be more luminous than those of inactive galaxies with the same black hole mass or the same bulge size. This suggests that the central regions of AGN host galaxies have characteristically lower mass-to-light ratios than inactive galaxies, most likely due to the presence of a younger stellar population in active systems. In addition, the degree of luminosity excess appears to be proportional to the accretion rate of the AGN, revealing a physical connection between stellar growth and black hole growth. Adopting a simple toy model for the increase of stellar mass and black hole mass, we show that the fraction of young stellar population flattens out toward high accretion rates, possibly reflecting the influence of AGN-driven feedback.



rate research

Read More

We present detailed image analysis of rest-frame optical images of 235 low-redshift ($z leq$ 0.35) type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars, as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H$beta$ FWHM $leq 2000$ km~s$^{-1}$) type 1 AGNs, in contrast to their broad-line (H$beta$ FWHM $> 2000$ km~s$^{-1}$) counterparts, are preferentially hosted in later type, lower luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests narrow-line type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier type (bulge-dominated), more massive hosts, although a minority of them appears to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.
149 - Paul B. Eskridge 2010
We have extracted PSF-fitted stellar photometry from near-ultraviolet, optical and near-infrared images, obtained with the Hubble Space Telescope, of the nearby (D ~ 5.5 Mpc) SBm galaxy NGC 1311. The ultraviolet and optical data reveal a population of hot main sequence stars with ages of 2-10 Myr. We also find populations of blue supergiants with ages between 10 and 40 Myr and red supergiants with ages between 10 and 100 Myr. Our near-infrared data shows evidence of star formation going back ~1 Gyr, in agreement with previous work. Fits to isochrones indicate a metallicity of Z ~ 0.004. The ratio of blue to red supergiants is consistent with this metallicity. This indicates that NGC 1311 follows the well-known luminosity-metallicity relation for late-type dwarf galaxies. About half of the hot main sequence stars and blue supergiants are found in two regions in the inner part of NGC 1311. These two regions are each about 200 pc across, and thus have crossing times roughly equal to the 10 Myr age we find for the dominant young population. The Luminosity Functions of the supergiants indicate a slowly rising star formation rate (of 0.001 Solar masses per year) from ~100 Myr ago until ~15 Myr ago, followed by a strong enhancement (to 0.01 Solar Masses per year) at ~10 Myr ago. We see no compelling evidence for gaps in the star-forming history of NGC 1311 over the last 100 Myr, and, with lower significance, none over the last Gyr. This argues against a bursting mode, and in favor of a gasping or breathing mode for the recent star-formation history.
A cluster finding method was developed and applied in four Local Group Galaxies (SMC, M31, M33 and NGC 6822). The aim is to study the young stellar population of these galaxies by identifying stellar structures in small and large scales. Also our aim is to assess the potential of using the observations of ESAs space mission Gaia for the study of nearby galaxies resolved in stars. The detection method used is a Hierarchical technique based on a modified friends of friends algorithm. The identified clusters are classified in five distinct categories according to their size. The data for our study were used from two ground based surveys, the Local Group Galaxy Survey and the Maggelanic Clouds Spectroscopic Survey. Relatively young main sequence stars were selected from the stellar catalogs and were used by the detection algorithm. Multiple young stellar structures were identified in all galaxies with size varying from very small scales of a few pc up to scales larger than 1 kpc. The same cluster finding method was used in six spiral galaxies observed with the Hubble Space Telescope in a previous study. The average size in each category of the identified structures in the Local Group galaxies presents values consistent with the identified structures in the relatively distant spiral galaxies. Most of the structures consist of stars within the observational limits of Gaias instruments. It is expected that Gaias observations will contribute significantly on the study of the young stellar population of nearby galaxies.
The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxys youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the H-beta, H-alpha, and Br-gamma recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10^6 Mo instantaneous burst and a continuous star formation rate of 1 Mo/yr), and two different treatments of initial rotation rate (v_rot = 0.0v_crit and 0.4v_crit). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.
229 - O. Vega , A. Bressan , P. Panuzzo 2010
We present the analysis of Spitzer-IRS spectra of four early-type galaxies, NGC 1297, NGC 5044, NGC 6868, and NGC 7079, all classified as LINERs in the optical bands. Their IRS spectra present the full series of H2 rotational emission lines in the range 5--38 microns, atomic lines, and prominent PAH features. We investigate the nature and origin of the PAH emission, characterized by unusually low 6 -- 9/11.3 microns inter-band ratios. After the subtraction of a passive early type galaxy template, we find that the 7 -- 9 microns spectral region requires dust features not normally present in star forming galaxies. Each spectrum is then analyzed with the aim of identifying their components and origin. In contrast to normal star forming galaxies, where cationic PAH emission prevails, our 6--14 microns spectra seem to be dominated by large and neutral PAH emission, responsible for the low 6 -- 9/11.3 microns ratios, plus two broad dust emission features peaking at 8.2 microns and 12 microns. Theses broad components, observed until now mainly in evolved carbon stars and usually attributed to pristine material, contribute approximately 30-50% of the total PAH flux in the 6--14 microns region. We propose that the PAH molecules in our ETGs arise from fresh carbonaceous material which is continuously released by a population of carbon stars, formed in a rejuvenation episode which occurred within the last few Gyr. The analysis of the MIR spectra allows us to infer that, in order to maintain the peculiar size and charge distributions biased to large and neutral PAHs, this material must be shocked, and excited by the weak UV interstellar radiation field of our ETG.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا