No Arabic abstract
This paper solves the consumption-investment problem under Epstein-Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed-horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.
This paper studies optimal consumption, investment, and healthcare spending under Epstein-Zin preferences. Given consumption and healthcare spending plans, Epstein-Zin utilities are defined over an agents random lifetime, partially controllable by the agent as healthcare reduces mortality growth. To the best of our knowledge, this is the first time Epstein-Zin utilities are formulated on a controllable random horizon, via an infinite-horizon backward stochastic differential equation with superlinear growth. A new comparison result is established for the uniqueness of associated utility value processes. In a Black-Scholes market, the stochastic control problem is solved through the related Hamilton-Jacobi-Bellman (HJB) equation. The verification argument features a delicate containment of the growth of the controlled morality process, which is unique to our framework, relying on a combination of probabilistic arguments and analysis of the HJB equation. In contrast to prior work under time-separable utilities, Epstein-Zin preferences facilitate calibration. The model-generated mortality closely approximates actual mortality data in the US and UK; moreover, the efficacy of healthcare can be calibrated and compared between the two countries.
The aim of this short note is to establish a limit theorem for the optimal trading strategies in the setup of the utility maximization problem with proportional transaction costs. This limit theorem resolves the open question from [4]. The main idea of our proof is to establish a uniqueness result for the optimal strategy. Surprisingly, up to date, there are no results related to the uniqueness of the optimal trading strategy. The proof of the uniqueness is heavily based on the dual approach which was developed recently in [6,7,8].
We adress the maximization problem of expected utility from terminal wealth. The special feature of this paper is that we consider a financial market where the price process of risky assets can have a default time. Using dynamic programming, we characterize the value function with a backward stochastic differential equation and the optimal portfolio policies. We separately treat the cases of exponential, power and logarithmic utility.
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-dependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.
The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellmans principle recently proposed in cite{KovacovaRudloff2019} applied to two particular dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated via numerical examples that include, in particular, the computation of the intermediate mean-risk efficient frontiers.