Do you want to publish a course? Click here

An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters

133   0   0.0 ( 0 )
 Added by Mats Brun MSc
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static brittle fracture propagation models, where the fracture evolution is tracked by a phase field variable. The model we consider is a two-field variational inequality system, with the phase field function and the elastic displacements of the solid material as independent variables. Using a penalization strategy, this variational inequality system is transformed into a variational equality system, which is the formulation we take as the starting point for our algorithmic developments. The proposed scheme involves a partitioning of this model into two subproblems; phase field and mechanics, with added stabilization terms to both subproblems for improved efficiency and robustness. We analyze the convergence of the proposed scheme using a fixed point argument, and find that under a natural condition, the elastic mechanical energy remains bounded, and, if the diffusive zone around crack surfaces is sufficiently thick, monotonic convergence is achieved. Finally, the proposed scheme is validated numerically with several bench-mark problems.



rate research

Read More

We consider a phase-field fracture propagation model, which consists of two (nonlinear) coupled partial differential equations. The first equation describes the displacement evolution, and the second is a smoothed indicator variable, describing the crack position. We propose an iterative scheme, the so-called $L$-scheme, with a dynamic update of the stabilization parameters during the iterations. Our algorithmic improvements are substantiated with two numerical tests. The dynamic adjustments of the stabilization parameters lead to a significant reduction of iteration numbers in comparison to constant stabilization values.
Mineral precipitation and dissolution processes in a porous medium can alter the structure of the medium at the scale of pores. Such changes make numerical simulations a challenging task as the geometry of the pores changes in time in an apriori unknown manner. To deal with such aspects, we here adopt a two-scale phase-field model, and propose a robust scheme for the numerical approximation of the solution. The scheme takes into account both the scale separation in the model, as well as the non-linear character of the model. After proving the convergence of the scheme, an adaptive two-scale strategy is incorporated, which improves the efficiency of the simulations. Numerical tests are presented, showing the efficiency and accuracy of the scheme in the presence of anisotropies and heterogeneities.
This article proposes an open-source implementation of a phase-field model for brittle fracture using a recently developed finite element toolbox, Gridap in Julia. The present work exploits the advantages of both the phase-field model and Gridap toolbox for simulating fracture in brittle materials. On one hand, the use of the phase-field model, which is a continuum approach and uses a diffuse representation of sharp cracks, enables the proposed implementation to overcome such well-known drawbacks of the discrete approach for predicting complex crack paths as the need for re-meshing, enrichment of finite element shape functions and an explicit tracking of the crack surfaces. On the other hand, the use of Gridap makes the proposed implementation very compact and user-friendly that requires low memory usage, and provides a high degree of flexibility to the users in defining weak forms of partial differential equations. A test on a notched beam under symmetric three-point bending and a set of tests on a notched beam with three holes under asymmetric three-point bending is considered to demonstrate how the proposed Gridap based phase-field Julia code can be used to simulate fracture in brittle materials.
Linear fracture mechanics (or at least the initiation part of that theory) can be framed in a variational context as a minimization problem over a SBD type space. The corresponding functional can in turn be approximated in the sense of $Gamma$-convergence by a sequence of functionals involving a phase field as well as the displacement field. We show that a similar approximation persists if additionally imposing a non-interpenetration constraint in the minimization, namely that only nonnegative normal jumps should be permissible. 2010 Mathematics subject classification: 26A45
In this work, we present numerical studies of fixed-stress iterative coupling for solving flow and geomechanics with propagating fractures in a porous medium. Specifically, fracture propagations are described by employing a phase-field approach. The extension to fixed-stress splitting to propagating phase-field fractures and systematic investigation of its properties are important enhancements to existing studies. Moreover, we provide an accurate computation of the fracture opening using level-set approaches and a subsequent finite element interpolation of the width. The latter enters as fracture permeability into the pressure diffraction problem which is crucial for fluid filled fractures. Our developments are substantiated with several numerical tests that include comparisons of computational cost for iterative coupling and nonlinear and linear iterations as well as convergence studies in space and time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا