Do you want to publish a course? Click here

Entanglement negativity as a universal non-Markovianity witness

118   0   0.0 ( 0 )
 Added by Alexander Streltsov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to engineer an open quantum system and its evolution, it is essential to identify and control the memory effects. These are formally attributed to the non-Markovianity of dynamics that manifests itself by the evolution being indivisible in time, a property which can be witnessed by a non-monotonic behavior of contractive functions or correlation measures. We show that by monitoring directly the entanglement behavior of a system in a tripartite setting it is possible to witness all invertible non-Markovian dynamics, as well as all (also non-invertible) qubit evolutions. This is achieved by using negativity, a computable measure of entanglement, which in the usual bipartite setting is not a universal non-Markovianity witness. We emphasize further the importance of multipartite states by showing that non-Markovianity cannot be faithfully witnessed by any contractive function of single qubits. We support our statements by an explicit example of eternally non-Markovian qubit dynamics, for which negativity can witness non-Markovianity at arbitrary time scales.



rate research

Read More

We have established a novel method to detect non-Markovian indivisible quantum channels using structural physical approximation. We have shown that this method can be used to detect eternal non -Markovian operations. We have further established that harnessing eternal non-Markovianity, we can device a protocol to detect quantum entanglement.
337 - E. Moreva , G. Brida , M. Gramegna 2015
We show how a property of dualism, which can exist in the entanglement of identical particles, can be tested in the usual photonic Bell measurement apparatus with minor modifications. Two different sets of coincidence measurements on the same experimental setup consisting of a Hong-Ou-Mandel interferometer demonstrate how the same two-photon state can emerge entanglement in the polarization or the momentum degree of freedom depending on the dynamical variables used for labeling the particles. Our experiment demonstrates how the same source can be used as both a polarization entangled state, as well as a dichotomic momentum entangled state shared between distant users Alice and Bob in accordance to which sets of detectors they access. When the particles become distinguishable by letting the information about one of the variables to be imprinted in yet another (possibly inaccessible) system or degree of freedom, the feature of dualism is expected to vanish. We verify this feature by polarization decoherence (polarization information in environment) or arrival time difference, which both respectively destroy one of the dual forms of entanglement.
136 - Lin Chen , Yi-Xin Chen 2007
We introduce a feasible method of constructing the entanglement witness that detects the genuine entanglement of a given pure multiqubit state. We illustrate our method in the scenario of constructing the witnesses for the multiqubit states that are broadly theoretically and experimentally investigated. It is shown that our method can construct the effective witnesses for experiments. We also investigate the entanglement detection of symmetric states and mixed states.
113 - F. Troiani , I. Siloi 2012
We derive energy minima for biseparable states in three- and four-spin systems, with Heisenberg Hamiltonian and s <= 5/2. These provide lower bounds for tripartite and quadripartite entanglement in chains and rings with larger spin number N. We demonstrate that the ground state of an $N$-spin Heisenberg chain is $N$-partite entangled, and compute the energy gap with respect to biseparable states for N <= 8.
We describe an entanglement witness for $N$-qubit mixed states based on the properties of $N$-point correlation functions. Depending on the degree of violation, this witness can guarantee that no more than $M$ qubits are separable from the rest of the state for any $Mleq N$, or that there is some genuine $M$-party or greater multipartite entanglement present. We illustrate the use our criterion by investigating the existence of entanglement in thermal stabilizer states, where we demonstrate that the witness is capable of witnessing bound-entangled states. Intriguingly, this entanglement can be shown to persist in the thermodynamic limit at arbitrary temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا