A possible mechanism for superconductivity in doped SrTiO3


Abstract in English

The soft ferro-electric phonon in SrTiO3 observed with optical spectroscopy has an extraordinary strong spectral weight which is much stronger than expected in the limit of a perfectly ionic compound. The charged phonon in SrTiO3 is caused by the close-to-covalent character of the Ti-O ionic bond and implies a strong coupling between the soft ferro-electric phonon and the inter band transitions across the 3 eV gap of SrTiO3. We demonstrate that this coupling leads, in addition to the charged phonon effect, to a pairing interaction involving the exchange of two transverse optical phonons. This process owes its relevance to the strong electron-phonon coupling and to the fact that the interaction mediated by a single transverse optical phonon vanishes at low electron density. We use the experimental soft phonon spectral weight to calculate the strength of the bi-phonon mediated pairing interaction in the electron doped material and show that it is of the correct magnitude when compared to the experimental value of the superconducting critical temperature.

Download