The self-consistent description of Langmuir wave and ion-sound wave turbulence in the presence of an electron beam is presented for inhomogeneous non-isothermal plasmas. Full numerical solutions of the complete set of kinetic equations for electrons, Langmuir waves, and ion-sound waves are obtained for a inhomogeneous unmagnetized plasma. The result show that the presence of inhomogeneity significantly changes the overall evolution of the system. The inhomogeneity is effective in shifting the wavenumbers of the Langmuir waves, and can thus switch between different process governing the weakly turbulent state. The results can be applied to a variety of plasma conditions, where we choose solar coronal parameters as an illustration, when performing the numerical analysis.