No Arabic abstract
We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside $mathbb{Z}^2 rtimes SL_2(mathbb{Z})$ and obtain several explicit instances where maximal Haagerup subgroups yield maximal Haagerup subalgebras. Our techniques are on one hand based on group-theoretic considerations, and on the other on certain results on intermediate von Neumann algebras, in particular these allowing us to deduce that all the intermediate algebras for certain inclusions arise from groups or from group actions. Some remarks and examples concerning maximal non-(T) subgroups and subalgebras are also presented, and we answer two questions of Ge regarding maximal von Neumann subalgebras.
Ge asked the question whether $LF_{infty}$ can be embedded into $LF_2$ as a maximal subfactor. We answer it affirmatively by three different approaches, all containing the same key ingredient: the existence of maximal subgroups with infinite index. We also show that point stabilizer subgroups for every faithful, 4-transitive action on an infinite set give rise to maximal von Neumann subalgebras. Combining this with known results on constructing faithful, highly transitive actions, we get many maximal von Neumann subalgebras arising from maximal subgroups with infinite index.
We show that certain amenable subgroups inside $tilde{A}_2$-groups are singular in the sense of Boutonnet and Carderi. This gives a new family of examples of singular group von Neumann subalgebras. We also give a geometric proof that if $G$ is an acylindrically hyperbolic group, $H$ is an infinite amenable subgroup containing a loxodromic element, then $H<G$ is singular. Finally, we present (counter)examples to show both situations happen concerning maximal amenability of $LH$ inside $LG$ if $H$ does not contain loxodromic elements.
We prove that $L(SL_2(textbf{k}))$ is a maximal Haagerup von Neumann subalgebra in $L(textbf{k}^2rtimes SL_2(textbf{k}))$ for $textbf{k}=mathbb{Q}$. Then we show how to modify the proof to handle $textbf{k}=mathbb{Z}$. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between $L(SL_2(textbf{k}))$ and $L^{infty}(Y)rtimes SL_2(textbf{k})$, where $SL_2(textbf{k})curvearrowright Y$ denotes the quotient of the algebraic action $SL_2(textbf{k})curvearrowright widehat{textbf{k}^2}$ by modding out the relation $phisim phi$, where $phi$, $phiin widehat{textbf{k}^2}$ and $phi(x, y):=phi(-x, -y)$ for all $(x, y)in textbf{k}^2$. As a by-product, we show $L(PSL_2(mathbb{Q}))$ is a maximal von Neumann subalgebra in $L^{infty}(Y)rtimes PSL_2(mathbb{Q})$; in particular, $PSL_2(mathbb{Q})curvearrowright Y$ is a prime action, i.e. it admits no non-trivial quotient actions.
We characterise, in several complementary ways, etale groupoids with locally compact Hausdorff space of units whose essential groupoid C*-algebra has the ideal intersection property, assuming that the groupoid is either Hausdorff or $sigma$-compact. This leads directly to a characterisation of the simplicity of this C*-algebra which, for Hausdorff groupoids, agrees with the reduced groupoid C*-algebra. Specifically, we prove that the ideal intersection property is equivalent to the absence of essentially confined amenable sections of isotropy groups. For groupoids with compact space of units we moreover show that is equivalent to the uniqueness of equivariant pseudo-expectations and in the minimal case to an appropriate generalisation of Powers averaging property. A key technical idea underlying our results is a new notion of groupoid action on C*-algebras that includes the essential groupoid C*-algebra itself. By considering a relative version of Powers averaging property, we obtain new examples of C*-irreducible inclusions in the sense of R{o}rdam. These arise from the inclusion of the C*-algebra generated by a suitable group representation into a simple groupoid C*-algebra. This is illustrated by the example of the C*-algebra generated by the quasi-regular representation of Thompsons group T with respect to Thompsons group F, which is contained C*-irreducibly in the Cuntz algebra $mathcal{O}_2$.
We introduce the Haagerup property for twisted groupoid $C^*$-dynamical systems in terms of naturally defined positive-definite operator-valued multipliers. By developing a version of `the Haagerup trick we prove this property is equivalent to the Haagerup property of the reduced crossed product $C^*$-algebra with respect to the canonical conditional expectation $E$. This extends a theorem of Dong and Ruan for discrete group actions, and implies that a given Cartan inclusion of separable $C^*$-algebras has the Haagerup property if and only if the associated Weyl groupoid has the Haagerup property in the sense of Tu. We use the latter statement to prove that every separable $C^*$-algebra which has the Haagerup property with respect to some Cartan subalgebra satisfies the Universal Coefficient Theorem. This generalizes a recent result of Barlak and Li on the UCT for nuclear Cartan pairs.