Do you want to publish a course? Click here

Joint Frame Synchronization and Channel Estimation: Sparse Recovery Approach and USRP Implementation

85   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Correlation-based techniques used for frame synchronization can suffer significant performance degradation over multi-path frequency-selective channels. In this paper, we propose a joint frame synchronization and channel estimation (JFSCE) framework as a remedy to this problem. This framework, however, increases the size of the resulting combined channel vector which should capture both the channel impulse response (CIR) vector and the frame boundary offset and, therefore, its estimation becomes more challenging. On the other hand, because the combined channel vector is sparse, sparse channel estimation methods can be applied. We propose several JFSCE methods using popular sparse signal recovery (SSR) algorithms which exploit the sparsity of the combined channel vector. Subsequently, the sparse channel vector estimate is used to design a sparse equalizer. Our simulation results and experimental measurements using software defined radios (SDRs) show that in some scenarios our proposed method improves the overall system performance significantly, in terms of the mean square error (MSE) between the transmitted and the equalized symbols compared to the conventional method.



rate research

Read More

68 - Tom Tirer , Oded Bialer 2020
Estimating the directions of arrival (DOAs) of multiple sources from a single snapshot obtained by a coherent antenna array is a well-known problem, which can be addressed by sparse signal reconstruction methods, where the DOAs are estimated from the peaks of the recovered high-dimensional signal. In this paper, we consider a more challenging DOA estimation task where the array is composed of non-coherent sub-arrays (i.e., sub-arrays that observe different unknown phase shifts due to using low-cost unsynchronized local oscillators). We formulate this problem as the reconstruction of a joint sparse and low-rank matrix and solve its convex relaxation. While the DOAs can be estimated from the solution of the convex problem, we further show how an improvement is obtained if instead one estimates from this solution the phase shifts, creates phase-corrected observations and applies another final (plain, coherent) sparsity-based DOA estimation. Numerical experiments show that the proposed approach outperforms strategies that are based on non-coherent processing of the sub-arrays as well as other sparsity-based methods.
89 - Jisheng Dai , An Liu , 2018
This paper addresses the problem of joint downlink channel estimation and user grouping in massive multiple-input multiple-output (MIMO) systems, where the motivation comes from the fact that the channel estimation performance can be improved if we exploit additional common sparsity among nearby users. In the literature, a commonly used group sparsity model assumes that users in each group share a uniform sparsity pattern. In practice, however, this oversimplified assumption usually fails to hold, even for physically close users. Outliers deviated from the uniform sparsity pattern in each group may significantly degrade the effectiveness of common sparsity, and hence bring limited (or negative) gain for channel estimation. To better capture the group sparse structure in practice, we provide a general model having two sparsity components: commonly shared sparsity and individual sparsity, where the additional individual sparsity accounts for any outliers. Then, we propose a novel sparse Bayesian learning (SBL)-based framework to address the joint channel estimation and user grouping problem under the general sparsity model. The framework can fully exploit the common sparsity among nearby users and exclude the harmful effect from outliers simultaneously. Simulation results reveal substantial performance gains over the existing state-of-the-art baselines.
Internet of Things (IoT) has triggered a rapid increase in the number of connected devices and new use cases of wireless communications. To meet the new demands, the fifth generation (5G) of wireless communication systems features native machine type communication (MTC) services in addition to traditional human type communication (HTC) services. Some of the main challenges are the heterogeneous requirements and the sporadic traffic of massive MTC (mMTC), which makes the orthogonal allocation of resources infeasible. To overcome this problem, grant free non-orthogonal multiple access schemes have been proposed alongside with sparse signal recovery algorithms. While most of the related works have considered only homogeneous networks, we focus on a scenario where an enhanced mobile broadband (eMBB) device and multiple MTC devices share the same radio resources. We exploit the approximate message passing (AMP) algorithm for joint device activity detection and channel estimation of MTC devices in the presence of interference from eMBB, and evaluate the system performance in terms of receiver operating characteristics (ROC) and channel estimation errors. Moreover, we also propose two new pilot sequence generation strategies which improve the detection capabilities of the MTC receiver without affecting the eMBB service.
Universal filtered multi-carrier (UFMC), which groups and filters subcarriers before transmission, is a potential multi-carrier modulation technique investigated for the emerging Machine-Type Communications (MTC). Considering the relaxed timing synchronization requirement of UFMC, we design a novel joint timing synchronization and channel estimation method for multi-user UFMC uplink transmission. Aiming at reducing overhead for higher system performance, the joint estimation problem is formulated using atomic norm minimization that enhances the sparsity of timing offset in the continuous frequency domain. Simulation results show that the proposed method can achieve considerable performance gain, as compared with its counterparts.
135 - Shuchao Jiang 2020
For massive machine-type communications, centralized control may incur a prohibitively high overhead. Grant-free non-orthogonal multiple access (NOMA) provides possible solutions, yet poses new challenges for efficient receiver design. In this paper, we develop a joint user identification, channel estimation, and signal detection (JUICESD) algorithm. We divide the whole detection scheme into two modules: slot-wise multi-user detection (SMD) and combined signal and channel estimation (CSCE). SMD is designed to decouple the transmissions of different users by leveraging the approximate message passing (AMP) algorithms, and CSCE is designed to deal with the nonlinear coupling of activity state, channel coefficient and transmit signal of each user separately. To address the problem that the exact calculation of the messages exchanged within CSCE and between the two modules is complicated due to phase ambiguity issues, this paper proposes a rotationally invariant Gaussian mixture (RIGM) model, and develops an efficient JUICESD-RIGM algorithm. JUICESD-RIGM achieves a performance close to JUICESD with a much lower complexity. Capitalizing on the feature of RIGM, we further analyze the performance of JUICESD-RIGM with state evolution techniques. Numerical results demonstrate that the proposed algorithms achieve a significant performance improvement over the existing alternatives, and the derived state evolution method predicts the system performance accurately.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا