We consider the relative entropy between the vacuum state and a state obtained by applying an exponentiated stress tensor to the vacuum of a chiral conformal field theory on the lightray. The smearing function of the stress tensor can be viewed as a vector field on the real line generating a diffeomorphism. We show that the relative entropy is equal to $c$ times the so-called Schwarzian action of the diffeomorphism. As an application of this result, we obtain a formula for the relative entropy between the vacuum and a solitonic state.