No Arabic abstract
The upgrades of ATLAS and CMS for the High Luminosity LHC (HL-LHC) highlighted physics objects timing as a tool to resolve primary interactions within a bunch crossing. Since the expected pile-up is around 200, with an r.m.s. time spread of 180 ps, a time resolution of about 30 ps is needed. The timing detectors will experience a 1-MeV neutron equivalent fluence of about $Phi_{eq}=10^{14}$ and $10^{15}$ cm$^{-2}$ for the barrel and end-cap regions, respectively. In this contribution, deep diffused Avalanche Photo Diodes (APDs) produced by Radiation Monitoring Devices are examined as candidate timing detectors for HL-LHC applications. To improve the detectors timing performance, the APDs are used to directly detect the traversing particles, without a radiator medium where light is produced. Devices with an active area of $8times8$ mm$^2$ were characterized in beam tests. The timing performance and signal properties were measured as a function of position on the detector using a beam telescope and a microchannel plate photomultiplier (MCP-PMT). Devices with an active area of $2times2$ mm$^2$ were used to determine the effects of radiation damage and characterized using a ps pulsed laser. These detectors were irradiated with neutrons up to $Phi_{eq}=10^{15}$ cm$^{-2}$.
Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in v{R}ev{z} are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.
A Cherenkov detector based on an array of five lead fluoride ($beta$-PbF$_2$) crystals of size 30 mm$times$30 mm$times$160 mm read out by reverse-type avalanche photodiodes (APDs) of active area 10 mm$times$10 mm was used to measure the flux of secondary particles emerging from the annihilation of pulsed beams of antiprotons at the Antiproton Decelerator of CERN. We compared the relative photon yields of radiators made of $beta$-PbF$_2$, fused silica, UV-transparent acrylic, lead glass, and a lead-free, high-refractive-index glass. Some {it p-i-n} photodiodes were also used for the readout, but the output signals were dominated by the nuclear counter effect (NCE) of secondary particles traversing the 300 $mu{rm m}$ thick depletion regions of the photodiodes. Smaller NCE were observed with the APDs, as the maximum electronic gain in them occurred predominately for electron-ion pairs that were generated in the thin ${it p}$-type semiconductor layer that proceeded the {it p-n} junction of high electric field where amplification took place.
Low Gain Avalanche Detector (LGAD) is the baseline sensing technology of the recently proposed Minimum Ionizing Particle (MIP) end-cap timing detectors (MTD) at the Atlas and CMS experiments. The current MTD sensor is designed as a multi-pad matrix detector delivering a poor position resolution, due to the relatively large pad area, around 1 $mm^2$; and a good timing resolution, around 20-30 ps. Besides, in his current technological incarnation, the timing resolution of the MTD LGAD sensors is severely degraded once the MIP particle hits the inter-pad region since the signal amplification is missing for this region. This limitation is named as the LGAD fill-factor problem. To overcome the fill factor problem and the poor position resolution of the MTD LGAD sensors, a p-in-p LGAD (iLGAD) was introduced. Contrary to the conventional LGAD, the iLGAD has a non-segmented deep p-well (the multiplication layer). Therefore, iLGADs should ideally present a constant gain value over all the sensitive region of the device without gain drops between the signal collecting electrodes; in other words, iLGADs should have a 100${%}$ fill-factor by design. In this paper, tracking and timing performance of the first iLGAD prototypes is presented.
A successful operation of a new optical readout system (THGEM + WLS + MGPDs (multichannel array of multipixel avalanche Geiger photodiodes) in a two-phase liquid xenon detector was demonstrated.
We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture.