Do you want to publish a course? Click here

The CALorimetric Electron Telescope (CALET) on the International Space Station: Results from the First Two Years On Orbit

74   0   0.0 ( 0 )
 Added by Yoichi Asaoka Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The CALorimetric Electron Telescope (CALET) is a high-energy astroparticle physics space experiment installed on the International Space Station (ISS), developed and operated by Japan in collaboration with Italy and the United States. The CALET mission goals include the investigation of possible nearby sources of high-energy electrons, of the details of galactic particle acceleration and propagation, and of potential signatures of dark matter. CALET measures the cosmic-ray electron + positron flux up to 20 TeV, gamma-rays up to 10 TeV, and nuclei with Z=1 to 40 up to 1,000 TeV for the more abundant elements during a long-term observation aboard the ISS. Starting science operation in mid-October 2015, CALET performed continuous observation without major interruption with close to 20 million triggered events over 10 GeV per month. Based on the data taken during the first two-years, we present an overview of CALET observations: uses w/o major interruption 1) Electron + positron energy spectrum, 2) Nuclei analysis, 3) Gamma-ray observation including a characterization of on-orbit performance. Results of the electromagnetic counterpart search for LIGO/Virgo gravitational wave events are discussed as well.



rate research

Read More

81 - O. Adriani , Y. Akaike , K. Asano 2019
In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from -2.81 +- 0.03 (50--500 GeV) neglecting solar modulation effects (or -2.87 +- 0.06 including solar modulation effects in the lower energy region) to -2.56 +- 0.04 (1--10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3 sigma.
192 - O. Adriani , Y. Akaike , K. Asano 2017
First results of a cosmic-ray electron + positron spectrum, from 10 GeV to 3 TeV, is presented based upon observations with the CALET instrument on the ISS starting in October, 2015. Nearly a half million electron + positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 $X_0$ and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152 $pm$ 0.016 (stat.+ syst.). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
98 - O. Adriani , Y. Akaike , K. Asano 2018
Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 $X_0$ at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below $sim$300 GeV, CALETs spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT) and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above $sim$1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.
106 - O. Adriani , Y. Akaike , K. Asano 2021
The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV$/n$ to 2.0 TeV$/n$ allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number $Z$ = 40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV$/n$ to 2 TeV$/n$ our present data are compatible with a single power law with spectral index -2.60 $pm$ 0.03.
72 - Y. Asaoka , Y. Akaike , Y. Komiya 2017
In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began tocollect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا